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ABSTRACT: Systematic, genome-scale genetic screens have been
instrumental for elucidating genotype−phenotype relationships,
but approaches for probing genetic interactions have been limited
to at most ∼100 pre-selected gene combinations in mammalian
cells. Here, we introduce a theory for high-throughput genetic
interaction screens. The theory extends our recently developed
Multiplexing using Spectral Imaging and Combinatorics (MuSIC)
approach to propose ∼105 spectrally unique, genetically encoded
MuSIC barcodes from 18 currently available fluorescent proteins.
Simulation studies based on constraints imposed by spectral flow
cytometry equipment suggest that genetic interaction screens at the
human genome-scale may be possible if MuSIC barcodes can be
paired to guide RNAs. While experimental testing of this theory awaits, it offers transformative potential for genetic perturbation
technology and knowledge of genetic function. More broadly, the availability of a genome-scale spectral barcode library for non-
destructive identification of single cells could find more widespread applications such as traditional genetic screening and high-
dimensional lineage tracing.
KEYWORDS: fluorescence, genetic screening, barcodes, genetic interaction screening, spectral flow cytometry, simulations

■ INTRODUCTION
Understanding which genes play essential roles in a cellular or
organismal process is crucial to our understanding of biology.1

This can be accomplished by perturbing genes and observing the
corresponding phenotype alterations.2 This process, when
applied in parallel to multiple genes one-at-a-time, is known as
genetic screening.3−8 Historically, there have been several
methods for performing genetic screens, including zinc finger
nucleases and transcription activator-like effector nucleases
which induce DNA DSBs at specific locations,9,10 RNAi which
knocks down expression of the gene-of-interest,11 and CRISPR
which induces DNA breaks or alters transcription at specific sites
in the genome.12−15

While these gene perturbation technologies have revolu-
tionized biomedical science, most genome-scale screens (out-
side of organisms like Sacchromyces cerevisae16) remain limited to
one gene at a time.17 However, often genes cooperate with one
another to influence phenotype. Such cooperation is called
genetic interaction. Recent approaches have made progress
toward larger-scale genetic interaction screening.18−24 For
example, cloning two different CRISPR gRNAs into a single
plasmid enables interaction screening for ∼100 pre-selected
genes.20,25−27 Other approaches include dual recombinase-
mediated cassette exchange to create mosaic in vivo models
harboring multiple desired cancer driver mutations,28 or using
protein epitope combinatorial barcodes (pro-codes) with mass
cytometry to perform high-dimensional CRISPR screens on

100s of selected genes in single cells.29 The sheer number of
observations that must be made to cover human gene
interactions space almost necessitates a single-cell approach,
like Perturb-seq.30−32 However, genetic interaction screening
approaches that scale past ∼100 genes in mammalian systems
are yet to be described.

Here, we propose that our recently developed fluorescence
multiplexing with spectral imaging and combinatorics
(MuSIC)33 approach may be compatible with single-cell genetic
interaction screening that could scale to the full human genome.
MuSIC uses combinations of fluorophores (proteins or small
molecules) to create spectrally unique MuSIC probes. Here, we
introduce the concept of further combining MuSIC probes into
MuSIC barcodes for increased diversity and thus multiplexing.
Moreover, because these spectral barcodes are fluorescence-
based, they can be read non-destructively. Theory and
simulations based on currently available fluorescent proteins
suggests that given a palette of 18 fluorescent proteins, ∼400 000
MuSIC barcodes could be generated, far surpassing human

Received: November 21, 2022
Published: July 18, 2023

Research Articlepubs.acs.org/synthbio

© 2023 The Authors. Published by
American Chemical Society

2290
https://doi.org/10.1021/acssynbio.2c00627

ACS Synth. Biol. 2023, 12, 2290−2300

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
D

E
L

A
W

A
R

E
 o

n 
Fe

br
ua

ry
 2

, 2
02

4 
at

 1
8:

45
:2

5 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Madeline+E.+McCarthy"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="William+B.+Dodd"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiaoming+Lu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Daniel+J.+Pritko"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nishi+D.+Patel"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Charlotte+V.+Haskell"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Charlotte+V.+Haskell"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hugo+Sanabria"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+A.+Blenner"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Marc+R.+Birtwistle"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acssynbio.2c00627&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00627?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00627?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00627?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00627?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acssynbio.2c00627?fig=abs1&ref=pdf
https://pubs.acs.org/toc/asbcd6/12/8?ref=pdf
https://pubs.acs.org/toc/asbcd6/12/8?ref=pdf
https://pubs.acs.org/toc/asbcd6/12/8?ref=pdf
https://pubs.acs.org/toc/asbcd6/12/8?ref=pdf
pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acssynbio.2c00627?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/synthbio?ref=pdf
https://pubs.acs.org/synthbio?ref=pdf


genome-scale. Simulations suggest that given current spectral
flow cytometry equipment and experimental noise, human
genome-scale genetic interaction screens may be possible. More
advanced instrument hardware such as more excitation lasers
and/or higher resolution emission spectra could increase such

capabilities. While experimental testing of this theory awaits, it
offers transformative potential for genetic perturbation technol-
ogy and knowledge of genetic function. More broadly, the
availability of a genome-scale spectral library for non-destructive
cell identification could find more widespread applications such

Figure 1.Theory and scope of MuSIC barcodes for genetic and genetic interaction screening. (A) Forster radius (R0) cut off for probe selection. From
the total list of possible MuSIC probes (987), only probes with an R0 value greater than 5 nm (910) are selected as potentially good probes. (B)
Potential number of MuSIC probes and barcodes. Given 18 fluorescent proteins, 910 MuSIC probes can be created (with an R0 > 5 nm), and given 910
MuSIC probes, 413,595 MuSIC barcodes could be created (using combination formula). (C) Example emission spectra of MuSIC probes and
barcodes when excited at 405, 488, and 635 nm. Given the fluorescent proteins mAmetrine and mOrange2, three MuSIC probes can be created that are
spectrally unique. Given these three MuSIC probes, three MuSIC barcodes can be created. (D) Schematic showing the creation of MuSIC probes and
barcodes from single fluorescent proteins. (E) Genetic and genetic interaction screening capabilities given the number of MuSIC probes that can be
created. The combination (not permutation) formula is used. For genetic interaction screening, the number of probes divided by two is the input to the
combination formula.
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as traditional genetic screens and high-dimensional lineage
tracing.

■ RESULTS
This paper explores a theory for creating a large library of
genetically encoded, fluorescence spectral barcodes for potential
application to genetic interaction screening. It is based on our
recently published multiplexing using spectral imaging and
combinatorics (MuSIC) approach,33 which creates unique
spectral signatures from stably linked combinations of individual
fluorophores. The individual fluorophores or combinations are
called MuSIC probes. The spectral signatures of combination
probes are linearly independent (i.e., unique) from the
individual fluorophore spectra comprising the combination so
long as sufficient Förster resonance energy transfer (FRET)
occurs. This linear independence property allows for the
estimation of individual MuSIC probe levels when they are
together in a mixture, a process often called “unmixing”.

We selected 18 fluorescent proteins (see the Methods section
and Table S1) that span the ultraviolet to infrared spectrum and
first wanted to determine how many two- or three-way MuSIC
probes could be generated. The quality of unmixing depends on
the FRET efficiency, which is directly related to the Förster
radius and the physical distance between chromophores of the
fluorescent proteins (see the Methods section). The distance
between fluorescent proteins can usually be adjusted by altering
the length and nature of the peptide fusion linker; thus, the
answer to this question depends on the Förster radius chosen as
acceptable (Figure 1A,B). Since high FRET producing pairs
usually have a Förster radius greater than 5 nm,34 we only
consider MuSIC probes that have an estimated Förster radius
greater than 5 nm. At this cutoff, 910 MuSIC probes can be

generated (Table S2), but this is far from genome-scale. We
should also note here that, in principle, the same fluorescent
proteins in a probe could be engineered to be a different distance
apart and thus a different FRET efficiency, which would increase
the number of probes. However, for the purpose of this work, we
only consider one FRET efficiency (∼50%) per probe.

Can we develop another layer of combinatorics to generate
further diversity? Consider the concept of a MuSIC barcode that
is a combination of MuSIC probes. As an example, let us start
with two fluorescent proteins, mAmetrine and mOrange2. From
these two fluorescent proteins, we can create three MuSIC
probes: a single fluorescent protein probe of mAmetrine, the
combination probe of mAmetrine and mOrange2, and another
single fluorescent protein probe of mOrange2. A MuSIC
barcode is then every two-way combination of the probes.
Thus, from these probes, we can create three MuSIC barcodes
(Figure 1C,D). The predicted MuSIC barcode spectra are
clearly unique from one another. The number of barcodes that
can be generated given a particular number of probes is given by
combinatorics; 910 probes gives 413,595 barcodes (Figure
1B,E). This barcode diversity could be potentially even further
increased by considering different probe expression levels as a
dimension, e.g., using different promoters to create low and high
expressing probe or barcode variants.35,36 However, for the
purposes of this study, we restrict ourselves to the simpler
situation, given it could potentially cover human genome space
on its own, reduces the impact of transcriptional fluctuations on
analysis, and also would likely simplify future experimental
construction of such a system (but discuss the expression
modulation possibilities further below).

It is important to note here that we consider combinations as
opposed to permutations. Although permutations give far more

Figure 2. Simulation setup. (A) Simulating emission spectra. Process of condensing the original emission spectra at every nanometer according to the
emission binning and noise of the simulated instrument. (B) Cases for the simulation experiment setup based on Cytek flow cytometers.
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barcodes from the same number of probes, they would also
require knowing the order of probes in the barcode. For
fluorescence expression-based barcodes, however, order is not
observable. Only the identity of the expressed probes is in
principle observable. For example, the barcode ABCD would
not be distinguishable from BCDA. Thus, simply including a
higher number of single fluorescent proteins in larger barcodes is
not a suitable alternative to increasing barcode diversity. For
example, for four-probe barcodes comprised from 18 fluorescent
proteins, only 3060 combination barcodes could be made (vs 73
440 from permutations). Alternatively, increasing the number of

possible probes gives substantial increases in barcode diversity,
such as with the MuSIC probes we are proposing.

This potential barcode diversity far exceeds the number of
genes in the human genome (Figure 1E). If each MuSIC
barcode could be paired to a guide RNA (gRNA), and if
spectrally resolvable in practice, one could perform genome-
scale genetic screening that is non-destructive in single cells.
Specifically, then a certain MuSIC barcode is detected in a
particular cell (via a fluorescence emission spectra measure-
ment), that would indicate the gRNA that was present, and
therefore the target gene that was likely modulated in that cell.

Figure 3.Workflow for probe removal. (A) Obtaining the list of good probes based on classification metrics. First, the emission spectra of a mixture of
probes is simulated given a set of probes. Next, noise is added to the emission spectra, and the spectra is unmixed (using the reference matrix) to predict
the mixture composition of probes. Binary classification is performed and finally, the predicted mixture composition is compared to the actual mixture
composition. This process is repeated for each probe, and the worst performing probe is removed until the overall classification is perfect. (B)
Graphical representation of probe removal results. Individual probes are removed until the overall MCC value (based on confusion matrices shown on
the right-hand side) is perfect (i.e., equal to 1). (C) Workflow of sequential list trimming of good MuSIC probes. The final list of good MuSIC probes
for single MuSIC probes (simulation 1) is used as the starting list for simulation 2. Then, the final list of good MuSIC probes for barcodes (simulation
2) is used as the starting list for simulation 3.
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MuSIC barcodes may also enable large-scale genetic
interaction screening (Figure 1E). Consider that a gRNA is
paired to a MuSIC barcode as above, but instead there are two
MuSIC barcodes in a cell corresponding to two specific gRNAs.
This means that four MuSIC probes would be present in the cell.
To avoid mapping ambiguity from probes to barcodes to gRNA,
the MuSIC probe library would have to be split in half before
linking gRNA with MuSIC barcodes, which makes the predicted
scale of genetic interaction screening lower than that of genetic
screens. With 910 MuSIC probes, 103 285 gRNA could be
studied for genetic interactions, which approaches human
genome-scale genetic interaction screening at ∼3× redundancy.

While the above suggests that MuSIC barcodes may enable
novel genetic screening technology, how well might it work in
practice? Of the 910 potential probes, how many can reliably be
identified from expected mixtures? To constrain the answer to
this question, we developed a simulation workflow. Rapid
measurement of fluorescence emission spectra in single cells has
recently become possible with Cytek flow cytometers. For this
reason, we have based the simulation studies described in this
paper off the Cytek Northern Lights Flow Cytometer (3 lasers;
405, 488, and 635 nm) and the Cytek Aurora Flow Cytometer (5
lasers; 356, 405, 488, 561, and 635 nm) (Figure 2A). The
spectral emission bin structure for each instrument and its
signal-to-noise ratio is known, and we incorporate such
information into our simulated measurements (Figure 2A�
see also the Methodssection). For genetic screens, it can be
useful to reserve one excitation channel to measure an observed
phenotype. Therefore, we also investigated a setup for two lasers
(Northern Lights, dedicating the 635 nm laser to a phenotype)
and four lasers (Aurora, dedicating the 635 nm laser to a
phenotype) (Figure 2B).

We implemented the following simulation strategy to
eliminate “poorly” performing probes from consideration
(Figure 3A). A “poorly” performing probe is one that leads to
at least one misclassification event in simulations. At the core of
the algorithm is a simulated MuSIC probe mixture. This is a
vector that represents which probe or probe(s) are present in the
ground truth, which we call the actual mixture composition.
Using the actual mixture composition vector and the calculated
reference matrix (see the Methods section�spectra of
individual probes), we can calculate the emission spectra of
the mixture. We add low or high noise (see the Methods
section�based on Cytek flow cytometer specs) to the emission
spectra of the mixture, generating the simulated observed

spectra. After noise is added, we perform linear unmixing, which
generates the predicted mixture composition. To compare the
predicted mixture composition to the actual mixture composi-
tion, we first perform binary classification (see the Methods
section). To quantify the performance, we calculate the
Matthews correlation coefficient (MCC), which is suitable for
cases such as this where there are many more true negatives than
true positives. If overall classification is not perfect (MCC <1),
then we identify which probe has the worst MCC and remove it.
The simulation is repeated until overall classification is perfect
(Figure 3B), at which point we obtain the final list of good
probes (Table S2). This process is performed in triplicate.

We use three sequential sets of simulations to determine a list
of “good” MuSIC probes that can be used (1) on their own, (2)
for MuSIC barcodes (genetic screening), and (3) for two
MuSIC barcodes (genetic interaction screening) (Figure 3C).
The final list that is obtained in Simulation 1 is used for
Simulation 2, and likewise 2 for 3 (Figure 3C). For example, only
probes that are good for use on their own are considered for
MuSIC barcodes. The list of “good” MuSIC probes from
Simulation 2 sets constraints on genetic screening for single gene
effects, and the list of good MuSIC probes from Simulation 3
sets constraints on genetic interaction screening.

The results of this process are summarized in Tables 1 and S2.
The final number of good MuSIC probes that can be unmixed
with perfect classification for MuSIC barcodes and sets of two
MuSIC barcodes are listed for each of the experimental setups
(summarized in Figure 2B). We found reasonable overlap
between which probes were labeled as good between replicate
runs (Figure S1), although the overall number of probes seems
to be a more reproducible and larger factor (Table 1). Given
these results, the number of gRNA that can be used for genetic
and genetic interaction screening are calculated using
combination formulas (Figure 1E). In general, more lasers and
lower noise allows for more probes and barcodes, as expected.
For genetic screens, each scenario investigated suggested
potential for genome-scale operation. For genetic interaction
screens, four and five laser setups with low noise predicted
operation at genome-scale. Even two and three laser setups with
high noise predicted operation with 1000s of gRNA in genetic
interaction screens, an order of magnitude above current
methods. In simulations where we considered typical ranges of
cell-to-cell variability in probe expression levels, similar results
are obtained, with slightly reduced # of gRNA (Table S3). If we
only consider MuSIC probes with one or two fluorescent

Table 1. Predicted Number of gRNA That Could be Used for Genetic and Genetic Interaction Screensa

# of good probes # of gRNA

experimental setup #laser noise one barcode two barcodes genetic screen genetic interaction screen

Cytek Northern Lights 3 high 337 ± 3 113 ± 5 56 737 ± 1001 1565 ± 146
3 low 634 ± 5 230 ± 11 200 897 ± 3149 6544 ± 610
2 high 292 ± 8 92 ± 5 42 458 ± 2445 1024 ± 101
2 low 550 ± 25 175 ± 12 151 970 ± 14 008 3805 ± 528

Cytek Aurora 5 high 666 ± 15 294 ± 7 221 893 ± 10 020 10 694 ± 510
5 low 894 ± 3 708 ± 12 399 477 ± 2596 62 397 ± 2046
4 high 580 ± 9 252 ± 10 167 983 ± 4916 7860 ± 654
4 low 879 ± 2 590 ± 11 385 885 ± 1755 43 294 ± 1535

aResults for the number of good probes that can be used to form barcodes and pairs of barcodes are shown for each experimental setup (the flow
cytometer used), the number of lasers used, and the noise level (either low or high). Given the number of good probes, the number of potential
gRNA for genetic and genetic interaction screens is calculated, as shown in Figure 1E. Results for the Cytek Northern Lights flow cytometer are
highlighted in blue, and the results for the Aurora flow cytometer are highlighted in yellow. Uncertainty is the standard deviation from triplicate
simulation experiments.
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proteins, as opposed to three, ∼300−1500 gRNA for genetic
interaction screens are still predicted (Table S4). Overall, these
results suggest that MuSIC barcoding theory represents a
promising approach to transforming genetic perturbation
technology.

■ DISCUSSION
Here, we propose an approach for single-cell, non-destructive,
and potentially genome-scale genetic and genetic interaction
screens. This work builds on our recently developed theory for
Multiplexing using Spectral Imaging and Combinatorics
(MuSIC). MuSIC probes are stably linked combinations of
fluorophores with unique spectral signatures that can be
deconvolved when in a mixture with other MuSIC probes.
The novel concept introduced in this work is that of a MuSIC
barcode, a combination of MuSIC probes. Given currently
available fluorescent proteins, we estimate that ∼105 unique
MuSIC barcodes can be created from combinations of MuSIC
probes. We devised a simulation workflow to generate lists of
MuSIC probes that are likely to be deconvolvable in a mixture,
given binary classification applications. These results show the
potential for genetic screens at the human genome-scale and
genetic interaction screens for at least 1000s of genes. In some
cases (i.e., four or five lasers and low noise), results show the
potential to perform genetic interaction screens at a human
genome-scale.

What could be learned with non-destructive, single-cell
genetic screens? When analyses are performed on a single-cell
level, each cell is analyzed independently, and as a result,
multiple measurements can be carried out in parallel, increasing
throughput.37−39 To accomplish this, CRISPR screenings have
been paired with single-cell RNA sequencing using methods like
Perturb-Seq,40 CRISP-seq,41 or CROP-seq.42,43 While single-
cell sequencing has the ability to pair transcriptome responses to
a nucleic acid barcode that indicates the genetic perturbation, it
is as yet prohibitively expensive for covering interaction
space.44,45 Moreover, sequencing is a destructive technology
so one cannot subsequently study perturbed cells-of-interest.
The use of MuSIC barcodes could expand on the capabilities of
these methods by allowing for high-throughput genetic
screening in a non-destructive manner. A non-destructive
application in single live cells could allow sorting of rare cell
types for subsequent follow-up studies. This could lead to co-
isolating rare cell types thought to cooperate with each other for
a disease phenotype.

What could be explored with high-dimensional non-
destructive genetic interaction screens? One application is
identification of synthetic lethal interactions, where disruption
of two genes results in cell death, but disruption of the individual
genes does not. One example is the discovery that poly(ADP-
ribose) polymerase (PARP) inhibitors effectively kill BRCA1-
and BRCA2-mutant tumor cells in breast cancer.46 The
proposed method may allow for genetic interaction screening
at a near genome-scale, which could lead to the discovery of new
synthetic lethal interactions in a high-throughput manner that is
not currently possible. By discovering and exploiting synthetic
lethal interactions in cancer cells, combinations of drugs can be
used to treat cancer more effectively and perhaps even at lower
drug concentrations and thus lower toxicity.47

Although simulations suggest a large potential for the
approach when applied to genetic screening, there are multiple
technical hurdles to its implementation. How can one clone
thousands of unique MuSIC barcodes specifically paired with

matched gRNA? If one uses lentiviruses to deliver the
constructs, how does one avoid template switching between
genetically similar fluorescent proteins or barcodes, corrupting
the connection between the barcode and gRNA?48 The
constructs may be large as well, so how does one achieve high
enough titer to perform genetic interaction screening? Although
flow cytometry is fast, can one assay enough cells to adequately
explore gene interaction space? These are just some of the major
issues that will arise, yet the potential applications, if these issues
can be overcome, could be highly impactful.

A potentially fruitful future direction for increasing barcode
diversity could be either increasing the number of elements in
each barcode (from 2 to 3 or 4) or using expression levels as an
alternate barcode dimension. Studies have shown that it is
possible to control expression over ∼103-fold range using
promoter engineering,35,36 which could be parsed into three
levels each containing an order of magnitude. If four elements
could be engineered into each barcode, even just considering the
18 single fluorescent proteins as elements (without MuSIC
probes) would yield ∼105 barcodes. However, some challenges
to implementation mentioned above could be even greater with
such a system. For example, a different promoter would have to
be coupled to each of the different barcode elements, with
subsequent comprehensive sampling during library construc-
tion. Also, the fidelity of spectral flow cytometry-based unmixing
is yet to be established on systems of this scale, and multi-level
classification performance beyond binary presence/absence
could be reduced, particularly considering transcriptional
fluctuations. Nevertheless, these are attractive avenues to
increase barcode diversity even further than studied here.

Although we focused here on genetic screening as an
application, large spectral barcode libraries could have other
uses, such as high-dimensional cell lineage tracing. Current
fluorescence-based lineage tracking is limited from spectral
overlap and the number of unique probes. Techniques such as
Brainbow work to fill this gap by using random ratios of different
fluorophores to label cells49 but are still limited to ∼about a
dozen deconvolvable colors.50 DNA barcodes have much more
potential diversity to cover millions of cells but requires
destructive DNA sequencing to be deconvovled.50 MuSIC
barcodes could be used to bridge this gap by expanding the
available palette of color codes for fluorescence-based lineage
tracing to potentially 103−105 deconvolvable colors.

In conclusion, despite impending technical hurdles, the
simulation studies presented here show the potential for MuSIC
barcodes to enable high-dimensional genetic interaction screens.
Its single-cell resolution compatibility and non-destructive
features could also enable multiple new applications for
established genetic screening, or for cell lineage tracing. The
capabilities of this approach can further be increased by
increasing the number of excitation lasers and/or the spectral
wavelength resolution.

■ METHODS
Availability, Code Overview, and Simulation. All

MATLAB code and raw data used for simulations are included
in the Supporting Information code zip file associated with this
manuscript. The scripts GenerateProbeData_3l_HN.m, Gen-
erateProbeData_3l_LN.m, GenerateProbeData_5l_HN.m, and
GenerateProbeData_5l_LN.m are used for generating the list of
good probes for single probes, barcodes, and two barcodes, for
three lasers/high noise (HN), three lasers/low noise (LN), five
lasers/high noise, and five lasers/low noise, respectively. The
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core of these scripts is done by the functions RemoveProbe-
s_onebyone.m, RemoveBarcodes_onebyone.m, and RemoveT-
woBarcodes_onebyone.m, respectively. The README file
contains relevant information on the code for execution and
reproducing the results. These simulations were performed
using MATLAB and 40 CPUs on the Palmetto supercomputing
cluster at Clemson University.
Data Sources. Emission spectra, excitation spectra, and

brightness for fluorescent proteins were gathered from
fpbase.org (Supporting Information Table 1 and references
therein). Specifications for flow cytometer noise, excitation
channels, and emission binning were obtained from the Aurora
and Northern Lights flow cytometer user guides on cytekbio.com.
Simulated FRET Efficiency andMuSIC Probe Selection.

FRET efficiency ε between two fluorophores is typically
calculated as follows

=
+ ( )

1

1 r
R

6

0 (1)

where r is the distance between the two fluorophores and R0 is
the Förster radius.51 The Förster radius is the distance between
fluorophores that gives a 50% FRET efficiency.51 Thus, to
estimate the FRET efficiency between any given pair of
fluorescent proteins, we must calculate R0 and r.

The Förster radius can be cast as follows52

= [ × × × × ]R Q e J nm0
2

D A
1/6

(2)

where β is a constant (which also converts to nm), Κ2 is an
orientation factor between the two fluorophores, QD is the
donor quantum yield, eA is the maximal acceptor extinction
coefficient (M−1·cm−1), and J is the spectral overlap integral.
The value of Κ2 is not usually known (nor easily measurable) but
is assumed to be a constant value of 2/3 for isotropic
reorientation of the coupled fluorophores.53 This value may
not be 2/3 for fluorescent protein tandems, but in practice,
deviations can be accounted for by the constant β.54 J is
calculated as follows

=J F E( ) ( ) dD A
4

(3)

where FD is the normalized emission spectra of the donor and EA
is the normalized excitation spectra of the acceptor, which both
are evaluated at wavelength λ. Here, the spectra are normalized
to have a maximum value of 1. We calculate the overlap integral
using the function trapz in MATLAB (see the Supporting
Information Code) with bounds from λ = 300 to 800 nm. The
value for β is estimated to be 6.33 × 10−6 based on a known
Förster radius of 6.1 nm for mTFP-Venus55 (along with known
QD, and eA, and J calculated as above).

The closest physical distance that chromophores of
fluorescent proteins can be is ∼3 nm.56 Furthermore, most
high FRET producing pairs have an R0 greater than 5 nm.34

Thus, we do not consider MuSIC probes that have R0 < 5 nm.
Since the distance between fluorescent proteins can usually be
adjusted (by linker length, for example), we set r = R0 in
simulations, giving a FRET efficiency of 50% for each MuSIC
probe with more than one fluorescent protein.
Simulating Reference Emission Spectra for MuSIC

Probes. There are three classes of MuSIC probes that require
separate consideration for simulating their emission spectra:
those made of a (i) single fluorescent protein, (ii) two

fluorescent proteins, and (iii) three fluorescent proteins. The
below equations are used to generate columns of the reference
matrix R (see below) for unmixing. Each simulated emission
spectra for a single excitation channel has a value every nm from
300 to 800 nm. The below model assumes that tandem
fluorescent proteins have the same properties as the monomers,
that static quenching is not a dominant feature, and that
fluorescent protein maturation is not a significant factor for the
spectra. We assume cross-talk is negligible, but for all intents and
purposes, it would be observed as effective FRET-related activity
and therefore is expected to not have additional functional
consequences for simulation results. We also note here that this
model does not take into account detector quantum efficiency.
Avalanche photodiode detectors (used in the Cytek instru-
ments) generally have slightly lower quantum efficiency in the
lower wavelengths (UV/blue), but so long as all reference
spectra and samples are measured with the same instrument, this
would not introduce any further bias and is not expected to affect
the conclusions drawn here.

To simulate the emission intensity spectra I for a single
fluorescent protein MuSIC probe, given a particular excitation
wavelength (λex) and vector of emission wavelengths from 300
to 800 nm at every nm (λ), the following equation is used
(adapted from Schwartz et al.)57

= × × ×I E C B F( ) ( ) ( )ex (4)

where E is the fraction of excited fluorophores and is a function
of excitation wavelength (explained below), C is the relative
probe concentration (taken as 1 for reference spectra assuming a
null condition of equal expression levels between probes), B is
the brightness (product of maximal extinction coefficient and
quantum yield), and F is the normalized emission spectra vector
of the fluorescent protein (normalized as above to a maximum
value of 1). E(λex) is given by the fluorescent protein’s
normalized excitation spectra at the designated excitation
wavelength.

For MuSIC probes with two fluorescent proteins, called 1 and
2 ordered from blue to red, the emission intensity spectra I (λ)
has three contributing components: acceptor emission due to
FRET (I2,1), donor emission (I1), and acceptor emission due to
direct excitation (I2). The overall emission intensity spectra I is
the sum of the three components

= + +I I I I2,1 1 2 (5)

Each of these terms depends on the FRET efficiency. We
assume that the FRET efficiency is reduced due to any direct
acceptor (2) excitation since excited acceptors would not be able
to undergo FRET. This adjusted FRET efficiency, εadj, is
calculated as follows

= × E(1 ( ))adj 2 ex (6)

where E2 is the fraction of excited fluorophores for fluorescent
protein 2 and the term (1 − E2) denotes the fraction of
fluorescent protein 2 molecules that have not been directly
excited.

Fluorescent protein 2 emission due to FRET from fluorescent
protein 1 is then calculated by

= × × × ×I E C B F( ) ( ) ( )2,1 1 ex adj 2 2 (7)

This emission intensity is proportional to emission properties
of fluorescent protein 2 (emission spectra and brightness), the
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fraction of excited molecules for fluorescent protein 1, and the
adjusted FRET efficiency between the two fluorescent proteins.

Fluorescent protein 1 emission is calculated by

= × × × ×I E C B F( ) ( ) (1 ) ( )1 1 ex adj 1 1 (8)

This emission is calculated similar to that mentioned above
for a single fluorescent protein; however, it is corrected to only
take into account the fraction of excited molecules that are not
undergoing FRET (1 − εadj).

Fluorescent protein 2 emission due to direct excitation is
calculated by

= × × × ×I E C B F( ) ( ) (1 ) ( )2 2 ex adj 2 2 (9)

We opt here to be conservative and reduce the amount of
fluorescence from direct excitation of fluorescent protein 2 by
the FRET taking place.

For MuSIC probes with three fluorescent proteins, called 1, 2,
and 3 ordered from blue to red, the emission intensity depends
on six different components. Three are due to direct excitation:
emission intensity of fluorescent protein 1 (I1), emission
intensity of fluorescent protein 2 (I2), and emission intensity
of fluorescent protein 3 (I3). The other three are due to FRET:
sensitized emission of fluorescent protein 2 due to FRET with
fluorescent protein 1 (I2,1), sensitized emission of fluorescent
protein 3 due to FRET with fluorescent protein 2 that ultimately
came from FRET with fluorescent protein 1 (I3,1), and sensitized
emission of fluorescent protein 3 due to FRET with fluorescent
protein 2 (I3,2). The overall intensity is calculated as the sum of
the six intensities. We assume negligible direct FRET from
fluorescent protein 1 to 3 since in most if not all cases, it is so
small so as to be negligible.

= + + + + +I I I I I I I1 2 3 2,1 3,2,1 3,2 (10)

The adjusted FRET efficiencies between fluorescent proteins,
εadj1 and εadj2, are calculated as above

= × E(1 ( ))adj 1 2 ex1 (11)

= × E(1 ( ))adj 2 3 ex2 (12)

The emission intensity of fluorescent protein 1 due to direct
excitation is calculated by

= × × × ×I E C B F( ) ( ) (1 ) ( )1 1 ex adj1 1 1 (13)

This emission is calculated similar to that mentioned above
and is corrected to only consider the fraction of excited
fluorescent protein 1 molecules that are not undergoing FRET
with fluorescent protein 2.

The emission intensity of fluorescent protein 2 due to direct
excitation is calculated by

= × × × ×I E C B F( ) ( ) (1 ) ( )2 2 ex adj adj 2 21 2

(14)

This emission is corrected to only consider the fraction of
excited fluorescent protein 2 molecules that are not undergoing
FRET with either fluorescent proteins 1 or 3.

The emission intensity of fluorescent protein 3 due to direct
excitation is calculated by

= × × × ×

×

I E C B

F

( ) ( ) (1 )

( )

3 3 ex adj adj adj 3

3

2 1 2

(15)

This emission intensity only considers the fraction of
fluorescent protein 3 molecules that are not involved in FRET
with either fluorescent protein 2 or FRET from the first
fluorescent protein through the second.

The emission intensity of fluorescent protein 2 due to FRET
from fluorescent protein 1 is calculated by

= × × × ×I E C B F( ) ( ) ( )2,1 1 ex adj 2 21 (16)

The emission intensity of fluorescent protein 3 due to FRET
from fluorescent protein 1 through fluorescent protein 2 is
calculated by

= × × × × ×I E C B F( ) ( ) ( )3,2,1 1 ex adj adj 3 31 2 (17)

Finally, the emission intensity of fluorescent protein 3 due to
FRET from fluorescent protein 2 is calculated as follows

= × × × ×I E C B F( ) ( ) ( )3,2 2 ex adj 3 32 (18)

Calculating the Observed Spectra Using Cytek
Binning. The emission spectra of the MuSIC probes are
simulated at every nanometer as described above. To replicate
the emission spectra generated from the Cytek Northern Lights
and the Cytek Aurora flow cytometers, we condensed the
simulated emission spectra based on the emission channels for
each instrument, referred to as binning. Each emission channel
represents spectral data condensed over a range of wavelengths,
so to convert the simulated emission spectra (which is at every
nanometer), we averaged the simulated emission spectra I for
each probe over the wavelength ranges of each instrument’s
emission channels. Each binned emission point is calculated as
follows

=f
I

n

( )i i
j

j (19)

where f j is the binned emission point over the wavelength range
for channel j, n is the number of wavelengths in channel j, i is the
pre-binned emission wavelength index, and I is calculated as
above.
Noise Model. Noise is assumed to be normally distributed

and simulated using the MATLAB function randn. The standard
deviation for the normal distribution is estimated based on data
from the Cytek Northern Lights flow cytometer, given by the
manufacturer, which is estimated at 50 relative fluorescent units
(RFUs) for an intensity of 105 RFUs. In the above simulations,
the fluorescence emission spectra have an average maximum of
∼10 RFUs. The standard deviation of 50 is thus decreased by a
factor of 104 to adjust for the simulated emission spectra, giving a
standard deviation of 0.005. This value is used as the value for
“low” noise. The standard deviation is set to 0.05 for “high” noise
(10-fold higher than the low noise).
Unmixing.The fluorescence emission spectra of a mixture of

fluorophores can be cast as a sum of the emission spectra of the
individual fluorophores as follows.

= ×R c (20)

where μ is an n-by-1 vector of the observed fluorescence
emission intensity at n emission wavelength/excitation channel
combinations, R is an n-by-m reference matrix that is generated
from the simulated emission spectra of m individual probes with
multiple excitation channels as described above, and c is an m-by-
1 vector containing the relative probe concentrations.
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Solving this equation gives an estimate of the relative probe
concentrations, c. This is carried out using the MATLAB
function lsqlin. The lower bound for elements of c is set to zero,
and the upper bound is left empty.
Generating a Simulated Experimental Data Set.

Simulated data are generated by first specifying the relative
probe concentrations for different mixtures of MuSIC probes.
This is referred to as the actual mixture composition vector, ca.
For single probe mixtures, one probe concentration is set to 1,
and all others are zero. For barcode mixtures, two probe
concentrations are set to 1, and all others are zero. For two
barcode mixtures, four probe concentrations are set to 1, and all
others are zero. For the case of variable probe expression levels,
probe concentrations are set to a random number between 0.5
and 1.5 (rand). For two barcode mixtures, the probes are divided
into two batches, and two probes are chosen from the first batch
while two are chosen from the second (see the Resultssection).
Equation 20 with ca and R is used to calculate μa, the simulated
emission spectra of the mixture. Experimental noise is then
added to the simulated emission spectra at either low or high
levels, as described above, giving μn, the simulated observed
spectra. Finally, eq 20 is used to solve for c (i.e., unmixing),
giving the predicted mixture composition, c.̂
Binary Classification. Binary classification is performed on

the predicted mixture composition vector by converting the
relative level for each probe to a one or zero based on a threshold
for each probe. The threshold for each probe is determined as
that which gives the maximum MCC value for each probe,
respectively, based on simulation data (see below).
Confusion Matrix and MCC. Evaluating the binary

classification performance requires the calculation of a confusion
matrix, which serves as a centralized table that tracks the number
of true and false positive and negative classifications. The
confusion matrix allows for the calculation of a multitude of
performance metrics and is calculated using the MATLAB
function confusionmat.m. Out of these different metrics, the
MCC, or phi coefficient, was chosen to quantify the perform-
ance of probes in the simulations. The MCC was chosen because
it is appropriate when the classes are highly imbalanced,58 such
as what we have here when there are many more true negatives
than true positives. Other metrics, such as the F1 score or
Accuracy, are problematic for situations where there might be
significantly more true negatives than false positives.

Given a classification threshold to evaluate, a confusion matrix
is generated for each probe using the actual mixture
compositions and the binary predicted probe concentrations
for each probe. These confusion matrices are used to generate an
individual MCC score for each probe, given the threshold. The
threshold is then varied to determine the optimum threshold to
maximize MCC for a particular probe.

A confusion matrix is generated for the entire group of probes
using a matrix of all concatenated actual mixture composition
vectors and a matrix of all concatenated predicted mixture
composition vectors. This confusion matrix is used to generate
the overall MCC score, which represents the performance for
the entire group of probes.
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Güldener, U.; Hegemann, J. H.; Hempel, S.; Herman, Z.; Jaramillo, D.
F.; Kelly, D. E.; Kelly, S. L.; Kötter, P.; LaBonte, D.; Lamb, D. C.; Lan,
N.; Liang, H.; Liao, H.; Liu, L.; Luo, C.; Lussier, M.; Mao, R.; Menard,
P.; Ooi, S. L.; Revuelta, J. L.; Roberts, C. J.; Rose, M.; Ross-Macdonald,
P.; Scherens, B.; Schimmack, G.; Shafer, B.; Shoemaker, D. D.; Sookhai-
Mahadeo, S.; Storms, R. K.; Strathern, J. N.; Valle, G.; Voet, M.;
Volckaert, G.; Wang, C.; Ward, T. R.; Wilhelmy, J.; Winzeler, E. A.;
Yang, Y.; Yen, G.; Youngman, E.; Yu, K.; Bussey, H.; Boeke, J. D.;
Snyder, M.; Philippsen, P.; Davis, R. W.; Johnston, M. Functional
Profiling of the Saccharomyces Cerevisiae Genome. Nature 2002, 418,
387−391.
(9) Urnov, F. D.; Rebar, E. J.; Holmes, M. C.; Zhang, H. S.; Gregory, P.

D. Genome Editing with Engineered Zinc Finger Nucleases. Nat. Rev.
Genet. 2010, 11, 636−646.
(10) Joung, J. K.; Sander, J. D. TALENs: A Widely Applicable

Technology for Targeted Genome Editing. Nat. Rev. Mol. Cell Biol.
2013, 14, 49−55.
(11) Novina, C. D.; Sharp, P. A. The RNAi Revolution. Nature 2004,

430, 161−164.

(12) Shalem, O.; Sanjana, N. E.; Hartenian, E.; Shi, X.; Scott, D. A.;
Mikkelsen, T. S.; Heckl, D.; Ebert, B. L.; Root, D. E.; Doench, J. G.;
Zhang, F. Genome-Scale CRISPR-Cas9 Knockout Screening in Human
Cells. Science 2014, 343, 84−87.
(13) Mali, P.; Yang, L.; Esvelt, K. M.; Aach, J.; Guell, M.; DiCarlo, J. E.;

Norville, J. E.; Church, G. M. RNA-Guided Human Genome
Engineering via Cas9. Science 2013, 339, 823−826.
(14) Kampmann, M. CRISPRi and CRISPRa Screens in Mammalian

Cells for Precision Biology and Medicine. ACS Chem. Biol. 2018, 13,
406−416.
(15) Schmid-Burgk, J. L.; Disruptive, J. L. Disruptive non-disruptive

applications of CRISPR/Cas9. Curr. Pharm. Biotechnol. 2017, 48, 203−
209.
(16) Baryshnikova, A.; Costanzo, M.; Kim, Y.; Ding, H.; Koh, J.;

Toufighi, K.; Youn, J.-Y.; Ou, J.; San Luis, B.-J.; Bandyopadhyay, S.;
Hibbs, M.; Hess, D.; Gingras, A.-C.; Bader, G. D.; Troyanskaya, O. G.;
Brown, G. W.; Andrews, B.; Boone, C.; Myers, C. L. Quantitative
Analysis of Fitness and Genetic Interactions in Yeast on a Genome
Scale. Nat. Methods 2010, 7, 1017−1024.
(17) Behan, F. M.; Iorio, F.; Picco, G.; Gonçalves, E.; Beaver, C. M.;
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