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SUMMARY

During manufacturing batches, Chinese hamster ovary (CHO) cells encounter critical levels of environmental 

stressors which can significantly reduce cell health and productivity. Therefore, stress tolerance must be 

considered during selection of a suitable host. In this study, we employ a population-based transcriptomic 

method, referred to as MemorySeq, and differential gene expression analysis on stress-shocked CHO cells 

to identify stress responsive biomarkers. These biomarkers exhibit transient and intermediate heritable 

memory states characteristic of epigenetic switches and transcriptional bursting. Using this workflow, 199 

genes were found to exhibit transcriptional variability characteristic of two-state systems with switching 

that forms four network communities of co-fluctuating genes. These communities were enriched in genes 

related to the regulation of apoptotic processes, gene expression, and metabolic pathways. Seven genes 

were identified as promising biomarkers of stress-resistance. Genetic engineering methods may be em

ployed in the future to bias clonal populations toward higher stress tolerance to manufacturing stress.

INTRODUCTION

Mammalian cells, in particular Chinese hamster ovary (CHO) 

cells, are favored for monoclonal antibody (mAb) production 

due to their favorable growth properties, rapid adaptability, 

and human-like post-translational modifications (PTMs).1,2 Like 

many immortalized cell lines, CHO cells are also characterized 

by transcriptional plasticity that leads to genetic drift, instability, 

and subclonal heterogeneity.3,4 While this plasticity is partly due 

to genomic instability, a frequently overlooked contributor is the 

dynamic epigenome. Epigenetic heterogeneity is driven by post- 

translational modifications to the DNA, RNA, histone proteins, 

and regulation by non-coding regulatory RNA.5,6 These epige

netic effects commonly produce rapid transient changes, and 

also produce rare longer transient changes that persist beyond 

a cell generation creating heritable ‘‘memory states’’.7 The rela

tionship between epigenetic marks and gene expression has 

been demonstrated in CHO cells through the formation of 

distinct chromatin states characterized by unique histone mod

ifications and DNA methylation patterns in response to variable 

culture conditions.8–10 Epigenetic regulation offers speed and 

reversibility compared to genetic mutations with transgenera

tional lifetimes anywhere from weeks in the case of DNA methyl

ation to days for histone acetylation.11,12

These modifications result in distinct phenotypes character

ized by multiple transient semi-stable levels of gene expression 

that are inherited from parent to progeny. These rare expression 

patterns have been identified in several organisms and the life

time varies on whether the system is truly epigenetically main

tained and forms a metastable state or is the consequence of 

transient coordinated fluctuations.13–15 These heritable gene 

states described previouslycharacterize a phenomenon referred 

to as an epigenetic switch that permits the transition between 

various expression levels.16 Genes or gene networks with herita

ble epigenetic states promote phenotypic diversity and plasticity 

to permit rapid adaptation to environmental stress within a sub

set of the population that can be inherited.17,18 Stress-resistance 

genes impose a metabolic burden when the stressor is absent, 

reducing growth, and fitness.19 When an environmental stressor 

is encountered, the presence of metastable systems formed 

from epigenetic diversity promotes the survival of stress-tolerant 

subpopulations and appears faster compared to the sluggish 

pace required for a favorable genetic mutation to appear. The 

premise of phenotypic plasticity and transcriptional bursting 

has been observed across various cancer cells where differential 

epigenetic regulation of genes, such as MDR1/ABCB1 or EGFR 

enables drug-resistant cells to persist even without drug 

exposure.15,20,21

During at-scale production, CHO cells encounter many pertur

bations to their environment, such as the accumulation of toxic 

metabolic byproducts, shear during sparging and mixing, high 

osmolality during pH maintenance, and significant spatial and 

temporal heterogeneity.22–26 These stresses can reduce specific 

cell growth rates, reduce productivity, and influence N-linked 
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glycosylation patterns.22,27–29 While many studies into stress 

response pathways only consider phenotypic changes and 

differentially expressed genes (DEGs), they do not indicate 

which genes are responsible for stress adaptation and tolerance 

nor which genes initiate the response.22,27,30,31 Alternative 

methods are required to interpret the noise of traditional tran

scriptomic tools in order to develop an understanding of the reg

ulatory gene networks that contribute to heritable stress tolerant 

phenotypes and suggest engineering targets to improve CHO 

cell line performance.

An elegant experimental method known as MemorySeq was 

developed by Shaffer et al. for the purpose of identifying these 

heritable gene expression states.32 This technique is reminiscent 

of the classical Luria-Delbrück experiment to investigate 

whether bacteriophage resistance developed because of selec

tive pressure or from random fluctuations of a resistant pheno

type during cell-division.33 That work, known as the fluctuation 

test, showed the development of a phage resistant phenotype 

occurred spontaneously in the absence of selective pressure 

and was inherited by progeny. This phenomenon has been 

observed in other organisms such as Priestia megaterium devel

oping antibiotic resistance or lung epithelial cells with differential 

susceptibility to adenovirus.34,35 MemorySeq similarly explores 

gene expression states that spontaneously arise and are in

herited by progeny by closely monitoring the transcriptomic pro

file of single cell-derived clonal populations, which represents in

termediate cellular memory states.

This project seeks to address this gap in knowledge through 

the identification of heritable biomarkers that could be selected 

or engineered in a rational design approach to yield a stress- 

tolerant phenotype. Biomarkers are a gene expression pattern 

that confers a distinct phenotype and are often identified using 

transcriptomic, proteomic, and/or metabolomic profiling.36 Us

ing MemorySeq, nearly 200 genes demonstrating intermediate 

heritability were identified and their complex interactions were 

explored. When compared to DEGs caused by CHO cell 

manufacturing stresses, we found these heritable gene networks 

are significantly enriched in stress response genes characterized 

by regulation of the cell cycle, apoptotic processes, and stimuli 

detection. The intersection of DEGs observed in stressful media 

to unstressed MemorySeq heritability data enabled identification 

of genes that may play a role in the initiation of stress tolerance 

phenotypes.

RESULTS

MemorySeq identifies heritable gene expression states 

in CHO cells

The MemorySeq workflow, originally developed by Shaffer et al., 

was intended to identify a panel of genes associated with rare 

pre-drug resistance phenotypes that persisted for several gener

ations in cancer cells.32 In this method, they posited that some 

rare phenotypes can be simplified as a two-state system, in 

which sparse cells exist in an aberrant state, referred to as the 

‘‘On’’ state that is characterized by an uncharacteristically 

‘‘high’’ or ‘‘low’’ expression level for a specific gene. In contrast, 

cells that are in the ‘‘Off’’ state, represent the most abundant 

expression state for a given gene. The prevalence of the rare 

phenotype has been demonstrated in other cell lines, such as 

WM989 cells, to occur within roughly 1%–2% of cells using 

small-molecule RNA fluorescence in-situ hybridization 

(smRNA-FISH) and flow cytometry.32 A slow rate of transitioning 

to the ‘‘On’’ state paired with a high probability of inheriting the 

‘‘On’’ state characterizes a heritable gene expression state. Fluc

tuations between the ‘‘On’’ state and the ‘‘Off’’ state that are 

rapid and stochastic with no correlation between progeny and 

parent cell characterize non-heritable gene expression states. 

In other words, if the lifetime of the ‘‘On’’ expression state is 

significantly longer than the characteristic time for cell-division, 

the rare phenotype will persist across multiple generations and 

be enriched in the progeny (Figure 1A). Importantly, it would 

prove difficult to differentiate these two patterns using scRNA

seq as it requires tracking population dynamics and tracing com

mon lineages between cells. Once the cells have grown for many 

generations, the appearance of rare phenotypes is indistinguish

able between natural biological noise or the shift to a stable and 

heritable phenotype (Figure S1).

In MemorySeq, around 40 single-cell populations of the 

CHOZN GS− /− Clone 23 strain were seeded using limited dilu

tion cloning (LDC) techniques to form the MemorySeq clones. 

These monoclonal populations were expanded until there 

were roughly 100,000 cells, reflecting 16–17 generations of 

growth over 3–4 weeks. This method seeks to capture the inter

mediate timescales in which rare phenotypes may first appear 

by constraining growth to the first 17 generations (achieving 

about 100,000 cells) and observe as the phenotype gradually 

becomes more prevalent in the broader population. The fluctu

ations that appear in pools with fewer cells would eventually 

reach a point of equilibrium if expanded well beyond 17 gener

ations, limiting the ability to monitor and measure appearance 

of transient phenotypes. At this time, the whole RNA content 

of the MemorySeq clones was extracted and sequenced. 

Alongside these samples, 40 RNA samples collected from 

100,000 bulk cells in a standard passage flask constituted the 

noise control, where there is no shared lineage in the resulting 

population. The noise control represents natural biological vari

ability and what the expression would appear for a clone grown 

many generations. For protein-coding genes, there are two ex

pected distributions of gene expression. The first is a roughly 

normal distribution centered near the noise control average 

and reflects non-heritable expression states as the rapid fluctu

ations maintain a roughly constant number of high expressing 

clones. This distribution displays relatively low variability in 

expression. The other is typically a positive or negative-skew 

distribution characterized by high variance with an elongated 

tail. The variance and skew are explained by the lineage- 

dependent expression level as the generation at which a parent 

cell first transitions into the rare, ‘‘On’’ expression state influ

ences the final expression level of the progeny. If the transition 

occurs earlier, then the final population would be enriched in 

the rare phenotype and be skewed relative to a MemorySeq 

sample that transitioned late or never transitioned at all 

(Figure 1B). Noise control samples are expected to be tightly 

distributed as there is no common lineage between cells in 

the sample and bulk expression is biased toward the average 

expression level.
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MemorySeq identifies 199 heritable gene states in CHO 

cells

After all RNA samples were collected and submitted for 

sequencing, there were 38 MemorySeq samples and 40 noise 

control samples left after quality control. Of the 32,428 initial 

gene counts measured, only protein-coding genes with a mini

mum expression level of 2.5 transcripts per million (TPM) were 

included in the analysis as low expressing genes display greater 

variability that may skew downstream analysis.32 Metrics of vari

ation were calculated for the remaining 10,106 genes. Heritability 

is marked by significantly greater variability and skew, which is 

directly related to when the rare phenotype first appears 

compared to rapidly fluctuating non-heritable gene states 

(Figures S2A and S2B). A gene displaying no tendency to inherit 

a rare expression state would possess a roughly 1:1 ratio of the 

coefficient of variation (CV) between the MemorySeq samples 

and the noise control. The overall variance observed in 

MemorySeq clones however were innately higher than the 

noise control samples due to the bias of cell-to-cell variability, 

yielding a ratio of 
CVMemorySeq Clones

CVNoise Control 
greater than unity for a majority 

of the genes (Figure 2A). A comparison of the 95% confidence 

intervals from 10,000 samples generated from bootstrapping 

revealed that a majority of the CVs were statistically greater 

in MemorySeq samples with a p value less than 0.001 

(Figure S2C). An alternative approach for identifying genetic 

states with heritable properties involves fitting a Poisson regres

sion between the coefficient of variation in TPM and the 

log2(MeanTPM)37,38 (Figure 2B). Genes that deviate significantly 

from the fit are those that have a statistically high variance for 

its corresponding expression level. Related to this is the theory 

that CV monotonically increases with the duration a cell occupies 

a rare phenotype.15 Therefore, genes with the slowest rate of 

fluctuation are those with the greatest variation. To identify the 

genes with heritable expression states, piecewise linear regres

sion was used to identify the breakpoint at which the residuals 

significantly deviated (Figure S2D). A range between the 98th 

and 95th percentile captured this breakpoint well, where 98th 

percentile was chosen to isolate only the most slowly fluctuating 

genes. There were 15 genes within the noise control that ex

ceeded the residual threshold and the single redundancy within 

the MemorySeq clones was removed as the natural variability of 

this gene confounds variability due to principles of heritability. 

Residuals were compared to the critical threshold and 199 heri

table gene states were identified. These genes appeared to be 

spread out in clusters across all 21 chromosomes with some 

common regulation patterns (Figure S3) and displayed the char

acteristic ‘‘smear’’ or positive skew distribution in MemorySeq 

clones expected for heritable genes compared to the narrow 

and low variation noise control (Figure 2C). It is important to 

note that a priori knowledge regarding the frequency of a given 

rare phenotype is not required nor assumed in identifying genes 

displaying prolonged inheritance.

Epigenomic and transcriptional characterization of 

heritable gene states highlights key deviations

The observed transcriptional fluctuations would possibly sug

gest that heritability coincides with poised or bivalent chromatin 

states. These chromatin states are marked by histone or DNA 

A B

Figure 1. Summary of MemorySeq workflow and fluctuation analysis for identifying heritable gene states: Graphical principles for 

MemorySeq workflow 

(A) Summary of heritable gene expression patterns for rare phenotypes. In this simplified model, green cells exhibit the rare-cell gene expression pattern and are 

surmised to be ‘‘On’’ while the white cells exhibit a bulk, lower average expression level and are said to be ‘‘Off’’. 

(B) MemorySeq workflow and basis for identifying heritable gene expression states. Starting from a bulk CHOZN GS− /− Clone 23 passage flask, LDC techniques 

were used to seed sufficient wells to acquire n = 40 single-cell clones. Comparison of bulk RNA-seq samples between monoclonal derived cell pools and those 

from a bulk population forms the basis for how heritable genes are identified as heritable genes form a non-Gaussian expression distribution while non-heritable 

genes do not.
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methylation patterns that are both activating and repressive and 

give rise to greater phenotypic plasticity such that a transition to 

a distinct phenotype is simplified by small disturbances to the 

local epigenetic state.39,40 To investigate whether there are 

conserved epigenetic features of the genes displaying heritable 

characteristics, historical DNA methylation from bisulfite 

sequencing and histone marks from chromatin immunoprecipi

tation (ChIP) sequencing datasets published by Feichtinger 

et al. were aligned to the PICR genome.8 These datasets were 

generated using high producing CHO-K1 cells, a close analog 

to the cells used in this work. DNA methylation of the promoter 

region upstream of the transcription start site (TSS) is predomi

nantly a repressive and transgenerational mark. The regions 

contain a high concentration of CpG islands or CG dinucleotides 

vulnerable to DNA methylation (Figure 3A). Many developmental 

genes become hypermethylated while essential genes remain 

hypomethylated. Intermediate methylation levels are an indica

tor of a poised state and a conserved signature of gene regula

tion as there is a lower barrier to transitioning toward hypo or hy

permethylation states.41,42 The average expression in the 

MemorySeq samples for the heritable gene pool (87.2 TPM) 

was lower than the non-heritable gene pool (98.8 TPM). The rates 

Figure 2. Application of MemorySeq identifies 199 heritable gene states in CHO cells: Visualization of heritable and non-heritable gene 

expression states 

(A) Coefficient of variation for TPM for MemorySeq Samples versus noise control. Each dot represents one of 10,106 different genes or a cluster of genes in which 

the color corresponds to the density of genes in each bin. Green dots represent those genes in the top 2% of residuals from the Poisson regression fit from the 

MemorySeq Samples while the blue dots are those in the top 2% of residuals from the noise control. The lone orange dot represents the one gene that was in the 

top 2% of residuals of both populations. 

(B) Coefficient of variation for transcripts per million versus log normalized average transcripts per million for noise control and MemorySeq samples. Each dot 

represents a different gene or cluster of genes. Upon fitting a Poisson regression distribution to each group, visualized as the dashed line, the genes that were in 

the top 2% of residuals and had an average log2(TPM) of 2.5 or greater are highlighted as green and considered to have a heritable gene expression profile. Any 

overlapping genes that were in the top 2% residuals and in the noise control were removed from consideration due to inherit biological noise. Genes of interest, to 

be discussed later, are marked in red. 

(C) Sample histograms for gene expression for six heritable (Left) and six non-heritable (Right) gene expression patterns. The blue curve corresponds to the 

distribution of MemorySeq clone expression and the pink is the distribution of noise control expression.
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of DNA hypermethylation (90%–100%) were nearly identical be

tween the two gene sets across the promoter region defined as 

the − 1500 to +500 bp region relative to the TSS.43 However, the 

rate of intermediate methylation (20%–80%) was more than 

doubled in the heritable gene pool at 29.1% compared to 

13.5% (Figure 3B). The average methylation for the heritable 

gene pool was significantly higher than the non-heritable gene 

pool (Wilcoxon rank-sum test p value <0.01). This prevalence 

of intermediate methylation patterns may suggest one mecha

nism by which these highly variable genes undergo transcrip

tional fluctuation during short timescales.

Another feature to consider is the concentration and combina

tion of histone marks that outline distinct regulatory functions 

and chromatin states. Using the Feichtinger et al. ChIP-Seq 

consensus data across three time points to train a hidden Mar

kov model (HMM) model, eleven unique chromatin states were 

identified and aligned to the two gene pools (Figure 3C). Across 

both the gene body and the promoter region, heritable genes 

had 1.6 to 2.7-fold greater occupancy by repressed, quiescent, 

and heterochromatin relative to non-heritable genes, and lower 

occupancy in active transcriptional states (Figure 3D). Further

more, genes with intermediate heritability were 4.2 times more 

likely to have greater occupancy of active enhancer states in 

the promoter region. This contrast of repressive histone marks, 

but proximity to active enhancers further outlines the bivalent 

epigenetic traits of the genes displaying heritable properties.

To verify the heritability principles for some of the physiologi

cally relevant genes identified as heritable, smRNA-FISH was 

completed for Hmox1 and Ier3. These genes were chosen as 

they had the highest basal expression, making signal intensity 

easiest to capture among the seven genes of interest (discussed 

more later). To measure the shared lineage across multiple cell- 

divisions, cells were first attached to a fibronectin-coated cover

glass to promote cellular adhesion and grown to 60%–70% 

confluence. In doing so, the proximity of cells with respect to 

one another is good approximation for their relatedness or com

mon lineage. As cells begin to transition to the high expression 

state, they serve as a nucleus for a larger, contiguous population 

of highly expressing cells if they are heritable (Figure S4). This 

pattern of outgrowth can be captured visually by hybridization 

to fluorescently labeled RNA probes corresponding to some of 

the heritable genes of interest.32 Highly expressing cells were 

Figure 3. Epigenomic characterization of heritable gene promoter and gene body regions 

(A) CpG island density within the − 1,500 to +500 bp promoter region relative to the TSS for both heritable and non-heritable gene sets. 

(B) Distribution of methylation patterns across heritable and non-heritable gene sets. Promoter regions with less than six CpG islands and CpG islands with less 

than a coverage of four were filtered out. Hypomethylated regions defined as promoters with 0%–10% while hypermethylated defined as those with 90%–100% 

methylation. 

(C) Eleven chromatin states defined by ChromHMM using six histone marks to define model. 

(D) Relative ratios of chromatin state occupancy for heritable and non-heritable gene sets within either gene body or promoter regions. Ratios greater than unity 

defines enrichment and percentages shown represent the heritable gene set occupancy.
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rare in the bulk population, but several pockets of such cells were 

observed for Hmox1 and Ier3.

Network community identification of heritable gene 

states reveals four co-fluctuating communities with 

shared biological processes

Complex phenotypes are rarely the result of a single gene, but 

rather the simultaneous co-expression of network communities. 

To further elucidate the relationships between the 199 heritable 

gene expressions states, a Pearson correlation coefficient was 

calculated between all pairwise comparisons (Figure 4A). A plu

rality of genes exhibited a strongly positive correlation, indicating 

a co-regulation that activates gene expression. To investigate 

how sensitive these correlations were to outliers, the Cook’s dis

tance of strongly correlated pairs was measured to determine if 

any biological replicate consistently skewed the correlations. 

Some outliers are implicitly expected in the data as an early tran

sition to the rare ‘‘high’’ expression state yields a heavily skewed 

distribution. However, if an outlier is considerably larger or 

smaller than the average, it suppresses the variability captured 

in the remaining MemorySeq clones and dominates the magni

tude of the variance and correlation. This can shift a gene that 

otherwise appears non-heritable to a heritable classification. 

The origin of the outlier can stem from an unusually early transi

tion or may result from genetic drift into a unique phenotype. 

CHO is particularly vulnerable to genetic drift due to genomic 

instability, but drift is random and still yields roughly normally 

distributed gene expression profiles.44 This stochastic phenom

enon contributes to cell-to-cell variability and may produce out

liers, but does not explain the consistent and coordinated fluctu

ations observed here.45 Pool 2 of the MemorySeq clonally 

derived samples was identified as a consistent outlier in Cook’s 

Figure 4. Network community identification of heritable gene states reveals four co-fluctuating communities with shared biological pro

cesses 

(A) Pearson pairwise correlation matrix for all 199 heritable gene states to highlight expression co-fluctuations between gene pairs. Red or positive correlations 

signify the mutual increase in expression levels between a gene pair (Example between Pc and Cited1 shown in bottom right). Blue or negative correlations signify 

the reduced expression of one gene coinciding with the enhanced expression of another gene (Example between Lgals1 and Dgat2 shown in top right). 

(B) Product of k-clique percolation for network community identification of the 199 heritable gene states for k = 4 and I = 0.68. Four distinct communities identified, 

differentiated by different colors along with GO terms enriched within the individual communities. Unlinked genes are shown in white and did not meet the k− 1 

requirement for inclusion within other networks. 

(C) Dot plot visualizing the 25 most enriched GO terms across all 199 heritable gene states. Size and color intensity reflect the number of genes contained with 

each GO term and the corresponding gene ratio. Dotted lines represent a p-value of 0.05, 0.01, and 0.001 from left to right.
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distance analysis and was removed from the dataset to yield 

37 MemorySeq replicates and 40 noise control replicates 

(Figure S5).

Network community identification from the correlations of 

pairwise co-fluctuating genes was carried out through a k-clique 

percolation method (k-CPM). The output of k-CPM is the identi

fication of overlapping network communities of strongly co-fluc

tuating gene expression states that may outline a unique pheno

type.46,47 This method simplifies the network by assigning each 

gene as an independent node connected to others by the pair

wise correlation. The size of the communities is defined by the 

value of k and the minimum correlation that connects nodes is 

defined by the threshold, I. A value of k = 4 was chosen to bal

ance the number of internally connected communities and the 

cohesion of the community32,48,49 and the optimized I was iden

tified to be 0.68 (Figure S6). There were three large communities 

and one small community identified under these conditions 

(Figure 4B). Gene ontology (GO) enrichment analysis was em

ployed to identify and assess overrepresented biological pro

cesses unique to each network community. Of interest are pro

cesses related to cell health and fitness during stress, which 

are closely related to cell cycle/differentiation/apoptosis, meta

bolism, transcriptional/translational control, and response to in

ternal and external changes.24,50,51 Enriched across the entire 

heritable gene pool were 11 children GO terms relating to the 

response to stimuli, including the response to chemical, external 

stimuli, and stress. Likewise, 5 children terms relating to 

apoptotic processes were enriched, most notably the regulation 

of apoptosis. These two biological processes constitute the im

mediate detection of external stress and the resulting response 

for unresolved stress when cytoprotective forces are insufficient 

to promote cell survival.52 Other noteworthy clusters include 

regulation of cell adhesion, cell communication, and cellular 

compartmentalization (Figure 4C). In addition to genes relating 

to these two biological processes and specific to certain com

munity networks identifier, there were other noteworthy enriched 

terms including cell cycle/proliferation, regulation of gene 

expression due to epigenetics/protein activity, and cell differen

tiation (Figure S7). These networks may outline orthogonal 

mechanisms for how CHO develops a stress-tolerant pheno

type. The rare and random fluctuation of a stress-tolerance 

gene that displays heritable characteristics into a high expres

sion state would poise a small population of cells to be ready 

to combat the deleterious effects of the stressors while confer

ring favorable growth kinetics or survivability that are inherited 

by the progeny. In this specific context, the mechanism behind 

the co-fluctuations is not well understood, but may be mutually 

linked to the expression or activation of common upstream reg

ulatory factors, related to the spatial proximity of the genes as 

measured through Hi-C sequencing methods, or involve gene 

regulatory networks.53–55 For example, Atf3 negatively co-fluctu

ates with a subset of genes, indicating their inheritance is directly 

linked to the inhibition activity of Atf3. Provided the co-fluctua

tion can be replicated, then the transition of any one of the genes 

within the network community may cascade until a comprehen

sive stress-tolerant phenotype develops. In this sense, even 

though individually the rare phenotype may only be present at 

low frequencies, there are multiple pathways for achieving a 

similarly tolerant phenotype and increases the likelihood that 

cells may rapidly adapt.

Combination of MemorySeq fluctuation analysis and 

differential gene expression analysis highlights 

promising biomarkers for cell-line engineering

While the MemorySeq data are enriched in stress-tolerance phe

notypes, it does not specify which genes correspond to which 

stressors. To explore this relationship, CHOZN GS− /− Clone 23 

was grown in production fed-batch flasks in the presence of bio

manufacturing-relevant levels of ammonia, lactate, and osmo

lality provided these chemicals hinder cell growth kinetics and 

reduces overall cell health22,28,56 (Figure S8). These stressors 

were chosen as they could be chemically manipulated in a fed- 

batch shake flask environment unlike shear stress or gas 

sparging. Ammonia and lactate accumulate as a waste product 

from an inefficient overflow metabolism, primarily from glutamine 

metabolism and glycolysis. Osmolality primarily accumulates 

during pH maintenance. Under fed-batch conditions, ammonia, 

lactate, and salt concentrations reach as high as 10–20 mM, 

15 mM, and 450 mOsm/kg.22,27,29,57 Consistent with literature, 

high levels of ammonia and osmolality resulted in a reduction 

in IVCD, while lactate appeared to be less impactful 

(Figure S8). The specific productivity was significantly reduced 

during ammonia stress and increased during osmotic stress, 

likely a result of cell swelling. Other notable conditions include 

shear, oxidative stress, toxic TCA intermediates, and pH and 

during perfusion operation this may include high-cell densities 

and shear from tangential flow filtration.58

The intersection between DEG and genes identified as herita

ble may suggest a possible route for which the stress-tolerance 

phenotype developed. Day 5 fed-batch RNA samples were 

collected from the high ammonia, lactate, osmolality, and com

bination of the three for differential gene expression analysis 

(DGEA). While all samples displayed a shift in gene expression, 

in agreement with the growth, productivity, and viability data, 

there was a muted difference between high lactate and the con

trol (Figure S9). The combinatorial stress condition had the most 

DEGs at 1275 and high lactate had the least at 155 DEGs. For 

each stress condition, the ratio of DEGs that were heritable to to

tal DEGs significantly exceeded the expected ratio (Chi-squared 

goodness of fit test, p < 0.001) given 10,106 genes from DGEA 

met filter parameters and 199 of these genes were considered 

heritable (Table 1). This finding reinforces our hypothesis that 

the heritable gene expression states significantly overlap with 

stress responsive genes. GO enrichment analysis was conduct

ed on the overlapping DEG and heritable genes for each stress 

condition. Between all four conditions, biological processes 

related to response to stimuli, metabolism, and regulation of 

apoptosis/cell-cycle were over-represented. These biological 

processes outline the recognition of an environmental stress, 

shift in intracellular conditions, and the phenotypic outcome of 

cell health (Figure S9).

Genes with biological processes related to stress response 

and cell-health were extracted for all heritable genes. Inspection 

of these vital biological processes revealed that 30%–50% of 

heritable genes related to the downregulation of apoptosis 

were significantly overexpressed in the stressed cultures except 
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for lactate. Provided that these cells represent stress-shocked 

cells and not stress-adapted cells, the shifts in gene expression 

are somewhat obfuscated as there is not an immediate means by 

which to differentiate what is the stress signal or stress response. 

Some intuition on their biological function may motivate whether 

increased expression is associated with stress tolerance, such 

as with Hmox1 and Nnmt which have been directly shown to 

display cytoprotective properties in response to oxidative and 

other sources of stress. However, for other genes, such as 

Atf3, Tp63, and Ier3, where they may play a role in both anti- 

and pro-apoptotic pathways depending on the cell-type and 

stress identity, further engineering or characterization is 

required. However, their transgenerational properties and asso

ciation with a stress phenotype warrants further investigation 

and may constitute a cell line engineering target that may either 

overexpressed if associated with stress response or repressed if 

associated with the stress signal. Of the four heritable genes 

related to the endoplasmic reticulum unfolded protein response 

(ER UPR), Atf3, Ccnd1, and Ddit3 were downregulated across 

the four stress conditions (Figure 5).59,60 Each of these genes 

play a role in the UPR and other stress response pathways to 

combat ER or external stress signals through induction of 

apoptosis.61–64 Their involvement in ER stress and regulation 

of apoptosis suggests another mechanism for how resistance 

develops in biopharmaceutical producing CHO cells where 

external stress compounds upon the metabolic burden of mAb 

production. The specifics of their regulation are similarly 

confounded in the stress response or stress signal perspective 

where overexpression of Ccnd1 is anti-apoptotic, Ddit3 is 

prop-apoptotic, and Atf3 is context-dependent. For many of 

these genes, this is the first work to identify them for stress 

and cell-health association. For others, there is a large body of 

work that has investigated gene function and role in apoptosis 

or cell-health, but outside of Ccnd1, not often in CHO.65 In cell 

lines such as HEK293T and HeLa, the knockout of Hmox1 

contributed to DNA replication stress and worsened culture 

duration while Ier3 knockout prevented TAp73β-facilitated 

apoptosis.66,67

The lifetime of these heritable expression states was esti

mated to be between 5 and 10 generations for all genes identi

fied here (See File S3) assuming a 1% frequency of the rare 

phenotype in bulk populations as affirmed in the original 

MemorySeq work, smRNA-FISH, and flow cytometry.32 The life

time, which monotonically increases with measured coefficient 

of variation, provides some insight on gene states that may 

have more robust mechanisms for maintaining rare phenotypes 

and are perhaps more key to the early emergence of resistance 

pathways. While it may not be the case that a rare phenotype 

with a frequency of 1% is capable of fully penetrating the popu

lation during bioreactor operation, stress tolerance can be ap

proached from different starting points as suggested by the co

fluctation network data. This nuance was pointed out in previous 

work using EGFR as a biomarker for resistance to the drug ve

murafenib,68 where only about 20% of the upregulated genes 

from EGFR-high cells were also upregulated in drug-resistant 

cells. This indicated that one biomarker is not sufficient to char

acterize a stress-resistant phenotype and that pre-resistant and 

Table 1. Relative enrichment of genes with heritable expression 

states within the DEG pool

Stress 

condition

Observed 

DEG and Heritable

DEG

Expected 

DEG and Heritable

DEG

Ammonia 61

704

14

704
Lactate 17

155

3

155
Osmolality 77

1147

23

1147
Combination 96

1275

25

1275

Provided there were 199 heritable gene states out of the 10,106 genes 

considered, the expected ratio would be roughly 2%. Significant differ

ence observed between the observed ratio and expected (Chi-Squared 

Goodness of Fit Test, p < 0.001).

Figure 5. Combination of MemorySeq fluctuation analysis and dif

ferential gene expression analysis highlights promising biomarkers 

for cell-line engineering 

Relative gene expression of genes with heritable expression states for com

mon stress response pathways. Heatmap of log fold2 change (LF2C) of heri

table gene expression states compared to control fed-batch flask for high 

ammonia, lactate, osmolality, and combination.
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resistant phenotypes are biologically distinct. From this analysis, 

7 promising biomarkers for resistance to manufacturing 

stressors were identified (Table 2). This list includes genes that 

were upregulated across many of the stress conditions, were 

identified as heritable, and have been previously characterized 

as influencing apoptotic processes.

DISCUSSION

Biopharmaceutical manufacturing stress is an often-unavoid

able obstacle for CLD and production at large-scale and can 

significantly alter cell line performance with regards to cell 

health, productivity, and product quality. There is a large body 

of research investigating apoptotic and proliferation related 

genes in CHO with the intended purpose of prolonging culture 

duration and engineering robust cells for therapeutic production. 

These efforts have identified overexpression of Bcl-2 and c-Myc 

or knockdown of Bak, Bax, Bad, and Caspase3/8/9 yield 

improved growth.69–72 This work sought to expand the list of 

possible targets for cell line engineering by outlining a compre

hensive and robust workflow for interpreting transcriptomics in

formation to identify stress-dependent biomarkers that improve 

cell performance during production. Many of these genes do not 

feature annotations directly related to cell health or their effects 

are ambiguous and are often ignored during conventional tran

scriptomic analyses. Analysis tools such as bulk RNA-seq and 

scRNAseq have been utilized to characterize population-based 

gene expression and monitor, to a lesser extent, cell-to-cell het

erogeneity, but they fail to capture the generational variability 

and the development of novel phenotypic patterns.73,74 Bulk 

RNA-seq is well-suited for measuring broad changes in gene 

expression, but due to an intrinsic sampling bias when collecting 

Table 2. Overview of promising biomarkers that exhibit heritable properties and play a role in stress adaptation or response

Gene symbol Stress condition Log2(FC)

Generation 

lifetime of 

ON state Relevant biological processes References

Hmox1 Ammonia 1.38 5.50 Provides cytoprotective forces against 

cellular and oxidative stress. Active 

in cell proliferation and anti-apoptotic 

processes

Zhu et al.118; Funes et al.119; 

Orellana et al.120

Lactate 0.68

Osmolality 0.83

Everything 1.64

Serpine1 Ammonia 0.63 5.53 Anti-apoptotic processes and enhanced 

proliferation upon activation of Akt and 

ERK signaling pathway. Also shown to 

correlate with higher productivity in CHO.

Pavón et al.121; Zhang et al.122; 

Pavón et al.123; Zhou et al.124; 

Ma and Chung125
Lactate − 0.33**

Osmolality 0.29**

Everything 0.84

Ier3 Ammonia 0.03* 5.48 Early response gene that responds to 

environmental stimuli and is regulated by 

ERK signaling pathway. Regulates 

apoptosis in a cell-dependent manner

Jin et al.67; Shahid et al.126; 

Zhou et al.127; Arlt and Schäfer128

Lactate 0.15*

Osmolality 2.17

Everything 1.78

Nnmt Ammonia − 1.15 4.96 Reduce apoptosis through the 

mitochondria-mediated pathway. 

Silencing inhibits cell proliferation. 

Provides resistance to oxidative stress

Zhang et al.129; Xie et al.130

Lactate 0.19**

Osmolality − 0.17**

Everything − 0.80

Tp63 Ammonia − 1.33 5.95 Acts as a sequence specific DNA binding 

transcriptional activator or repressor. 

May be required in conjunction with 

TP73/p73 for initiation of p53/TP53 

dependent apoptosis. Cell-line 

dependent behavior

Somerville et al.131; Melino132

Lactate − 0.24*

Osmolality − 0.66

Everything − 2.07

Hmgcs2 Ammonia 0.01* 6.35 Catalyzes step in ketogenesis, condensing 

acetyl-CoA to acetoacetyl-CoA to form 

HMG-CoA. Plays a role in cholesterol 

biosynthetic pathway and expands 

secretory framework

Chen et al.133; Chevallier et al.134

Lactate − 0.70

Osmolality 0.64

Everything − 0.92

ATF3 Ammonia − 0.90 5.03 Functions as an oncogene in prostate 

cancer by enhancing cell proliferation, 

gene regulation by recruiting p300, and 

stress response. Appears to 

co-localize with p53

Edagawa et al.60; Zhao et al.61; 

Ku and Cheng135

Lactate 0.13*

Osmolality − 0.99

Everything − 0.54**

Summarizes LF2C for different stress conditions and the relevant biological function. 

*p > 0.05 and |L2FC|<0.58. 

**p < 0.05 and |L2FC|<0.58.
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from a large population, it can under or over predict rare pheno

types.74,75 By contrast, scRNAseq samples the transcriptomic 

profile from individual cells isolated from the bulk population. 

The single-cell resolution of gene expression provides significant 

information on cellular heterogeneity but is limited on sample 

size, is difficult to connect to multi-omic datasets, and cannot 

track the shared lineage between cells without the use of exten

sive bar-coding.76 Efforts to characterize single-cell heterogene

ity in CHO have been mired by the intrinsic noise contained 

within. A pair of scRNAseq experiments considering CHO and 

HEK293T identified an increase in heterogeneity as a result of 

increased population doubling levels (PDLs) and storage condi

tions, but was only able to identify one gene, enolase as the sole 

biomarker that characterized distinct subpopulations using a 

similar heuristic of CV scaled to transcriptional level.77,78 While 

they were unable to find any marker genes for subpopulations, 

the GO terms of the highly variable genes they did collect shared 

similar themes as the ones found in this work for heritable genes. 

This includes response to stimuli, cell-cycle regulation, and cell 

differentiation.78 By expanding cells in parallel, as described in 

the MemorySeq workflow, each of the monoclonal-derived cell 

pools have a shared internal lineage. The heterogeneity in gene 

expression that is measured is therefore a reflection of interme

diate transcriptional fluctuations that are time dependent as well 

as natural genetic drift. If the monoclonal expansion were carried 

out well beyond 100,000 clones, the RNA-seq profile would 

gradually shift toward the bulk RNA-seq result captured from 

the noise control.

Leveraging MemorySeq tools, this is the first body of work that 

seeks to identify biomarkers for pre-stress tolerance in CHO us

ing heritability principles. Ammonia stress has been shown to in

fluence glycosylation, amino acid metabolism, and induce 

genomic instability in the form of indels and SNPs. Using bulk 

RNA-seq to measure transcriptional shifts for ammonia-stressed 

CHO cells, genes relating to alanine metabolism, cell-cycle regu

lation, cellular senescence, and DNA damage/repair were iden

tified as possibly contributing to impaired growth and productiv

ity kinetics.22,27 However, there was no metric for discerning the 

noise of DEGs and those that could play a key role in stress 

adaption. MemorySeq highlights gene states that play a crucial 

role in the transition to a stress tolerant state. However, not all 

genes may necessarily be responsible for the tolerance pheno

type.68 By combining MemorySeq with stress adapted DEG, 

this method narrows the list down to possible entry points into 

stress response pathways. Similarly, exploratory works in hyper

osmolar stress conditions characterized the same effect of 

enhanced specific productivity and reduced growth rate. Tran

scriptomic and proteomic analysis identified mitochondrial acti

vation, oxidative stress reduction, and cell cycle progression as 

playing a role in hyperosmolar stress response, but could not 

comment further as to which genes were most important in the 

developing stress adapted phenotype.56,79 Previous literature 

has widely considered the phenotypic and surface-level proteo

mic changes associated with manufacturing stress conditions 

but has not reflected on the possible pathways for stress 

adaptation.

There are many cell line engineering strategies available for 

targeting these biomarkers to induce a stress-resistant pheno

type. If the activation of a gene is correlated with stress-toler

ance, gene overexpression could be achieved by integrating 

additional copies or using inactivated Cas9 (dCas9)-directed 

activation (CRISPRa) to enhance stress adaptation.80–82 This 

approach has proven effective for the reduction of apoptosis, 

autophagy, and cell proliferation where incorporating additional 

copies of genes such as Bcl-2/Beclin-1, Ccnd1, and c-Myc 

was capable of extending culture duration by two or more 

days, increased IVCD my more than 20%, and reduced early 

stage apoptosis by over 35%.65,70,83 This work is intended to 

generate unique targets for similar engineering that not only cf. 

favorable growth, but tolerance to the stress associated with 

production. Inherently, stress tolerance is an anti-apoptotic or 

pro-proliferation process, so while overexpression may cf. a 

slight burden, it is offset by the concomitant improved growth. 

Likewise, if the repression of a gene is correlated with stress- 

resistance, gene knockout or knockdown-methods such as 

RNA interference (RNAi), Cas9-facilitated knockout, or dCas9- 

directed inhibition (CRISPRi) could also be employed for the 

same effect.84,85 However, stress response pathways are 

composed of many proteins that influence a variety of molecular 

functions to accommodate and mitigate the deleterious effects 

of stress. Methods that target a single gene may not always acti

vate a whole pathway but lessen only one symptom of the 

stress.86,87 Activation of response pathways develops a more 

robust stress response to tackle the multi-faceted burden of 

cellular stress.88,89 These stress-responsive pathways have 

been noted in CHO to alleviate oxidative-stress associated 

with production and bioreactor conditions that involve anti- 

apoptotic and GSH biosynthetic pathways.90–92 In this work, 4 

co-fluctuating community networks that contain genes relating 

to stress detection and critical cell health processes were iden

tified and may demonstrate critical entry points into stress 

response pathways. Similar to the involvement of Bcl-2 in the 

signaling pathway for other cell health markers, such as the 

PI3K/Akt survival pathway or caspase proteins, genes within 

these communities may serve similar signaling or regulatory 

roles to cf. favorable and robust cell health.93,94

It is believed that these heritable, but ultimately transient fluc

tuations in expression are largely due to epigenetic modifications 

and gene regulatory networks within the co-fluctuating commu

nities. While no comparable study has been conducted in CHO, 

temperature, nutrient, and osmolality induced environmental 

stress has resulted in epigenetically driven and inherited stress 

tolerant states in other organisms. In S. cerevisiae during periods 

of inositol starvation and osmotic stress, accumulation of di- and 

tri-methylation of H3K4 histone marks was observed following a 

period of hyperacetylation of H3 and H4.95,96 This state corre

lated to the recruitment of the SET3C complex that reinforced 

an active heritable memory state that facilitated the recruitment 

of poised RNAPII lasting 4–8 generations.96 A similar pattern of 

H3K4me2 deposition and transgenerational inheritance of stress 

resistance has been observed in eukaryotic organisms such as 

HeLa and D. melanogaster cells as facilitated by the nuclear 

pore protein Nup98.97–99 Definitive identification of the source 

of heritable expression states would require capturing a single 

cell displaying the rare phenotype and characterizing the epige

netic and transcriptomic state using single-cell methods, such 
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as scRNAseq, scATACseq, and scChIPseq. The chromatin 

structure of the DNA is complex and forms conserved connec

tions across chromosomes and between genes that are other

wise not proximal or contiguous in the linear genome55,100 Co- 

regulation may become a function of local chromatin structures 

and the cross-talk of epigenetic marks and may outline another 

engineering approach utilizing site-specific epigenetic modifica

tions to simulate the natural transition to rare phenotypes.

While the mechanism for the intermediate heritable states 

described in this worked are still ambiguous, these states also 

appear to be a combination of conserved and cell line specific 

processes. When compared to the original MemorySeq work 

performed in WM989 and WM983B melanoma, MDA breast can

cer, and PC9 carcinoma cell lines, anywhere from 4% to 10% of 

the heritable gene states unique to these cell lines appeared in 

our CHO cell line. Across all four of the cell lines, 16.5% of the 

genes there were identified as heritable in this work appeared 

heritable in at least one of the other cell lines, including Hmox1, 

Ier3, and Serpine1.32 These shared gene states may represent 

some form of evolutionarily conserved states that serve as impor

tant entry points to the transition to stress tolerance.

Ultimately, this study sought to expand our understanding of 

CHO cell stress adaptation. The deleterious phenotypic effects 

of common manufacturing stressors, such as ammonia, lactate, 

and osmolality, observed in literature were likewise observed 

here. However, using the non-conventional transcriptomic work

flow described in MemorySeq, the process for parsing the 

transcriptional noise that the stresses induce becomes more 

meaningful. The combination of information obtained from 

stress-induced cultures and MemorySeq reinforces our under

standing of manufacturing stress while highlighting diagnostic 

genes for the rational design of engineered cell lines. While the 

exact mechanism of the two-state systems observed here re

mains unclear, their observation in other systems reinforces 

the idea that epigenetics and, to some extent, stochasticity 

play an important role. Such epigenetically driven, metastable, 

long-term memory states have been elucidated in epithelial tis

sue and S. enterica to adapt to perturbations within the environ

ment.13,14 Being able to harness what is otherwise a natural and 

random adaptation phenomenon into an intentionally engi

neered pathway will lead to CHO strain that is primed for the 

strain of manufacturing-scale condition. Healthier cells remain 

more productive for longer and alleviate the burden of down

stream purification. This pipeline for assessing stress-depen

dent effects is also translatable to other cell lines and other stress 

conditions, expanding our ability to identify cell line engineering 

targets and streamline CLD processes.

Limitations of the study

In this work, we outline a robust workflow for identifying stress- 

associated biomarkers. The intention with this work is to propose 

a method to interpret noise traditionally observed in RNA-seq 

data. There are two primary limitations of this work described 

here. The first of which concerns the claims of epigenetic driven 

inheritance and the risk regulatory gene networks dominate the 

observations of heritability. While we do observe conserved 

repressive epigenetic marks concentrated on these heritable 

genes, it becomes difficult to deconvolute these two phenomena 

and are at risk of enriching the heritable gene pool with genes 

that are mutually regulated by similar transcription factors and 

not by spontaneous epigenetic deviations. It would be valuable 

to supplement this study with the full panel of epigenetic charac

terizing methods alongside RNA-seq to determine if changes in 

average expression are accompanied by changes in the 

epigenome.

The second concern relates to the population of DEGs 

following stress shock during fed-batch. It is unclear from the 

RNA-seq data whether DEGs reflect a stress signal or stress 

response pathway. In some cases, the answer may be deci

phered by considering biological function. For example, 

Hmox1 is a known anti-apoptotic gene and its upregulation 

would be beneficial to the cell. Other genes are more ambiguous 

or are not annotated with a related. We believe that regardless of 

which pathway is involved, the gene itself remains a viable 

biomarker for cell line engineering. However, it may require 

investigating both overexpression and repression to identify 

the mode of action. An additional study measuring differential 

gene expression in stress-adapted cells, or cells passaged in 

the presence of stress until cell-specific growth rate is recov

ered, may resolve this uncertainty.
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16. Gómez-Schiavon, M., and Buchler, N.E. (2019). Epigenetic switching as 

a strategy for quick adaptation while attenuating biochemical noise. 

PLoS Comput. Biol. 15, e1007364.

17. Park, J., Lim, C.J., Shen, M., Park, H.J., Cha, J.Y., Iniesto, E., Rubio, V., 

Mengiste, T., Zhu, J.K., Bressan, R.A., et al. (2018). Epigenetic switch 

from repressive to permissive chromatin in response to cold stress. 

Proc. Natl. Acad. Sci. USA 115, E5400–E5409.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

CHOZN® GS-/- ZFN, Clone 23 Cells (C.griseus) MilliporeSigma N/A

Antibodies

SiluTMmab Stable-Isotope Labeled Universal 

Monoclonal Antibody Standard

Sigma-Aldrich MSQC3-100UG

Oligonucleotides

Stellaris® RNA FISH Probes LGC, Biosearch Technologies N/A

Chemicals, peptides, and recombinant proteins

EX-CELL® CD CHO Fusion Medium Sigma-Aldrich 14365C-1000ML

EX-CELL® CHO Cloning Media Sigma-Aldrich C6366-500ML

Fetal Bovine Serum Sigma-Aldrich F0926-100ML

EX-CELL® Advanced CHO Fed-batch Medium Sigma-Aldrich 14366C-1000ML

EX-CELL® Advanced CHO Feed 1 (without glucose) Sigma-Aldrich 24368C-1L

D-(+)-Glucose Solution Sigma-Aldrich G8769-100ML

RNAlater RNA Preservation Solution Sigma-Aldrich R0901-100ML

Stellaris® RNA FISH Hybridization Buffer LGC, Biosearch Technologies SMF-HB1-10

Stellaris® RNA FISH Wash Buffer A LGC, Biosearch Technologies SMF-WA1-60

Stellaris® RNA FISH Wash Buffer B LGC, Biosearch Technologies SMF-WB1-20

VECTASHIELD® PLUS Antifade Mounting Medium Vector Labratories H-1900-2

Ammonium chloride VWR BDH9208-500G

Sodium lactate Sigma-Aldrich 71718-10G

Sodium chloride Sigma-Aldrich S9888-25G

miRNeasy Mini Kit Qiagen 217084

125-mL Erlenmeyer flasks Corning CLS431143

Non-treated 96-well plates CELLTREAT 229596

18 mm diameter, #1 thickness fibronectin 

coated coverglass

Neuvitro Corporation GG-18-Fibronectin

Software and algorithms

RStudio https://www.r-project.org/ N/A

ImageJ https://imagej.net/ij/ N/A

RNA Sequencing and MemorySeq 

Processing and Analysis Code

https://github.com/SGrissomUDel/ 

CHOCell_MemorySeq

N/A

Deposited data

RNA Sequencing Data https://www.ncbi.nlm.nih.gov/ 

geo/query/acc.cgi?acc=GSE232813

GEO: GSE232813

Other

Minitron incubator INFORS HT N/A

Agilent 5200 Fragment Analyzer Agilent N/A

Illumina® HiSeq 4000® Illumina N/A

Stellaris 8 tauSTED/FLIM confocal microscope Leica Microsystems N/A

DeNovix® CellDrop DeNovix N/A

Bio-Monolith Protein A, 4.95 × 5.2 mm Agilent 5069-3639

Agilent 1290 Infinity II Series HPLC System Agilent N/A
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines and culture maintenance

A recombinant CHOZN® GS-/- ZFN, a CHO-K1 subclone with glutamine synthetase (GS) knocked out for glutamine selection, pro

vided by MilliporeSigma was used for this work. This subclone, referred to as CHOZN® GS-/- Clone 23, expressed a monoclonal 

antibody and GS for selection. These cells were grown in EX-CELL® CD CHO Fusion Medium (Sigma-Aldrich, St. Louis, MO), defi

cient in glutamine and seeded and passaged in 125-mL Erlenmeyer flasks (Corning, Corning, NY) with a working volume of 25 mL. 

The cells were cultured in a Minitron incubator (INFORS HT, Bottmingen, Switzerland) at 37◦C, 5% CO2, 80% relative humidity, and 

shaking at 100 rpm with passages every 3 days at a cell density of 0.5 × 106 cells/mL.

METHOD DETAILS

Single cell limited dilution cloning

Single cell limited dilution cloning (LDC) was used to isolate monoclonal pools for MemorySeq. To assist outgrowth with vital growth 

factors and nutrients during LDC, conditioned media was produced by harvesting sufficient cells in a 25 mL flask to achieve a seeding 

density of 1.0 × 106 cells/mL. The cell culture media was harvested 24 hours post-initiation by centrifuging the culture medium at 

200 × g for 5 minutes and sterile filtering the media through a 0.22 μ m syringe filter. Conditioned media was stored at 4◦C for no 

longer than seven days.

24 hours before starting LDC, a stock culture was seeded at 1.0 × 106 cells/mL. Sufficient cell culture volume was collected and 

serially diluted to obtain a final concentration of 2.5 cells/mL in an 80%/20% mix of EX-CELL® CHO Cloning Media (Sigma-Aldrich, 

St. Louis, MO) and conditioned media. Six non-treated 96-well plates (CELLTREAT, Pepperell, MA) were seeded with 200 μ L of the 

mix for an average of 0.5 cells/well. Plates incubated under static conditions at 37◦C, 5% CO2, and 80% relative humidity and were 

undisturbed for 7 days. Afterwards, plates were inspected using a light optical microscope and wells with outgrowth originating from 

a single location were noted as single cell pools while those with no outgrowth or outgrowth from multiple places were discarded. The 

plates were fed an additional 20 μ L of EX-CELL® CHO Cloning Media to supplement growth and maintain volume after evaporation. 

After 3 weeks, single cell colonies reached roughly 100,000 cells or 80% confluency.

RNA extraction and sequencing

Cell samples were collected either from LDC plates, standard passage flasks, or from fed-batch flasks. For MemorySeq RNA extrac

tion, 8 × 104 – 12 × 104 cells were collected for extraction and for fed-batch flasks, 2.5 × 106 cells were used for extraction. RNA was 

extracted using the miRNeasy Mini Kit (Qiagen, Germantown, MD) following manufacturer’s protocol. All RNA samples were run on 

the Agilent 5200 Fragment Analyzer (Agilent, Santa Clara, CA) to verify RNA quality prior to submission for sequencing. Samples with 

an RIN ≥ 6.0 and at least 100 ng of high quality RNA were sent for sequencing. For MemorySeq, the target was 40 RNAseq samples 

for both MemorySeq monoclonal samples and noise control samples, but after quality selection only 38 samples and 40 samples 

remained for MemorySeq samples and noise control samples respectively. RNAseq samples were submitted to Azenta for RNA se

lection using poly(A) selection and library preparation. Samples were sequenced on the Illumina® HiSeq 4000® and were sequenced 

at a coverage of at least 19× and on average 24× with at least uniquely mapped 10 million reads per RNA sequencing library. 

Sequencing files were returned as FASTQ files and stored online at GEO Series accession number GEO: GSE232813 (See key 

resources table for publicly deposited reads) along with the converted count tables. Raw FASTQ files were transferred to the Univer

sity of Delaware Biomix HPC cluster where they were processed through a pipeline consisting of Trim Galore for adapter trimming/ 

quality control, STAR for RNAseq alignment to CriGri-PICR, Samtools for file conversion, and HTSeq to enumerate unique and high- 

quality mapped reads.101–105 Gene count tables were transferred to R and processed further depending on the application. The RNA

seq processing pipeline is available at (See key resources table for publicly available code).

smRNA-FISH and imaging

Small molecule RNA fluorescence in-situ hybridization (smRNA-FISH) was used to visualize the relationship between cells sharing a 

common lineage and the maintenance of heritable gene expression states. RNA FISH probes were designed using the Stellaris® 
Probe Designer software (LGC, Biosearch Technologies, Hoddesdon, United Kingdom) and included 30-48 probes that had length 

a 20 bp, at least 2 bp of spacing, and either Quasar® 570 or Quasar® 670 fluorescent dyes. These probes were designed to target 

Hmox1 and Ier3 as identified from MemorySeq. To track the shared lineage of dividing cells, 10,000 CHOZN® GS-/- Clone 23 cells 

suspended in 90% EX-CELL® CD CHO Fusion Medium/10% FBS were first fixed onto an 18 mm diameter, #1 thickness fibronectin 

coated coverglass by centrifugation with 30 minute incubation at 37◦C. The coverglasses were incubated at statically at 37◦C, 5% 

CO2, and 80% relative humidity for 7 days or until 50%–60% confluency after unattached cells were gently washed off.

Multiplex smRNA-FISH was achieved using the Stellaris® RNA FISH reagents (LGC, Biosearch Technologies, Hoddesdon, United 

Kingdom) according to manufacturer’s protocol for adherent cells. Briefly, this involved fixation using 3.7% v/v formaldehyde solution 

in 1× PBS for 10 minutes and permeabilization using 70% ethanol for storage at 4◦C. Before hybridization, coverglasses were 

washed with a wash buffer containing 10% formamide. Coverglasses were then transferred to a humidity chamber and incubated 

in a hybridization buffer containing 10% formamide and a Quasar® 570 or Quasar® 670 labeled RNA FISH probe and incubated 
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for 16 hours. After hybridization, coverglasses were washed with a 10% formamide wash buffer before staining with DAPI. After 

mounting with Vectashield Mounting Medium, samples were imaged immediately using a Stellaris 8 tauSTED/FLIM confocal micro

scope (Leica Microsystems, Wetzlar, Germany).

Stress-condition fed-batch

Fed-batch flasks were established to adapt the CHOZN® GS-/- Clone 23 cell line to stress agents characteristic of manufacturing 

conditions. Fed-batch flasks were seeded from freshly thawed cells after 3 passages to allow recovery. The flasks were seeded 

at a cell density of 0.5 × 106 cells/mL in 30 mL of EX-CELL® Advanced CHO Fed-batch Medium (Sigma-Aldrich, St. Louis, MO). 

Starting day 3, EX-CELL® Advanced CHO Feed 1 (Sigma-Aldrich, St. Louis, MO) was fed at 5% of the total volume every other 

day and D-(+)-glucose solution was fed to maintain a concentration of 4 g/L of glucose starting day 4. Cell viability and cell density 

was measured daily using the DeNovix® CellDrop (DeNovix, Wilmington, DE). Supernatant and cell pellets were collected every other 

day starting day 1 and cell samples were stored in RNAlater stabilization solution (ThermoFisher Scientific, Waltham, MA) after 

washing with 1× PBS. Fed-batch was carried out until all flasks fell below 70% cell viability. Ammonium chloride (VWR, Radnor, 

PA), sodium lactate (Sigma-Aldrich, St. Louis, MO), and sodium chloride (Sigma-Aldrich, St. Louis, MO) were all spiked in at the 

beginning of fed-batch at varying concentrations to simulate stress during fed-batch production. Analysis of variance (ANOVA) 

and two-sample t-test assuming equal variance were used for determining significance between conditions.

QUANTIFICATION AND STATISTICAL ANALYSIS

MemorySeq processing

For the computational analysis of MemorySeq samples and noise control samples, the raw count for each gene was converted to 

transcripts per million (TPM). The genes were filtered out such that only protein-coding genes and TPM ≥ 2.5 were included in 

the dataset. Metrics of variation, including average, standard deviation, coefficient of variation, skewness, and kurtosis were all 

calculated for each gene in each dataset. Heritable gene expression states were defined as genes with TPM ≥ 2.5 and in the 

98th percentile for residuals from the Poisson regression fit. Bootstrapped 95% confidence intervals were generated by sampling 

with replacement of from all MemorySeq or noise control samples until 10,000 bootstrap samples were generated. The bounds of 

the interval were identified by ordering all CV in ascending order and identifying the value for which 2.5% of the CV values were above 

and below that point. Asymptotic tests of CV equality were generated using the cvequality package in R.106 Any gene expression 

states in the noise control that exceeded the residual cutoff were removed from the heritable pool. This yielded 199 unique heritable 

gene expression states. To understand how heritable gene expression states co-fluctuate with each other, a correlation matrix was 

generated using pairwise Pearson correlation coefficients. The resulting matrix, containing all unique significantly heritable gene 

expression states, had dimensions of 199 genes x 199 genes. Computational analysis and MemorySeq processing tools are available 

at (See key resources table for publicly available code, Data S1 and S2).

Using the Pearson correlation coefficients matrix for all significantly heritable gene expression state, network communities were 

generated using a k-clique percolation method (k-CPM) using the CliquePercolation (0.3.0) package in R.107 This algorithm detects 

communities by assigning each gene as an independent node and each node is connected to each other by edges defined as the 

correlation in the undirected and weighted Pearson correlation matrix. There are two adjustable parameters when generating the 

network communities. The first is I, which defines the intensity threshold or the absolute value of the edge threshold required to 

connect two nodes. The other is k, which defines the minimum number of fully connected nodes to form a k-clique. A k-clique com

munity then contains all adjacent k-cliques that share k-1 nodes. A value of k=4 was used based on prior k-CPM for similar analyses 

while I was varied from 0.6 to 0.98 in order to find the optimal threshold.48,49 Adjusting I changes the size of each k-clique com

munity, the number of communities, and the number of isolated nodes. Optimization of I can be achieved by tuning I such that the 

ratio of the largest to the second largest community is roughly two and/or maximizing variance after excluding the largest com

munity, where variance, χ, is defined as shown in Equation 1 where N is the total number of communities detected, ni is the 

size of the ith community excluding the largest one, and nj is the size of the jth community excluding the largest community and 

the ith community.

χ =
∑i = N − 1

i = 1

ni
2

(
∑j = N − 2

j = 1

nj

)2
(Equation 1) 

Gene ontology (GO) enrichment analysis, a method used to detect the over-representation of certain gene product attributes within 

a group of genes, was used to assign enriched biological processes to each community to further understand the functional similar

ities of the co-fluctuating gene networks. GO biological processes terms were collected for 13,288 of the 21,386 protein-coding 

genes for the CriGri-PICR assembly.101 GO enrichment analysis was completed using the topGO (2.46.0) R package with a minimum 

node size of 10.108 The statistical test of significance was conducted using Fisher’s exact test with the classic, weighted, and elim

ination methods to ensure physically significant enrichment was captured with an adjusted p value < 0.05 (See Data S4: GO Enrich

ment Analysis).
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Prediction of heritability lifetime index

Expression states were modeled as either inheriting the bulk average phenotype (OFF) or a rare deviating phenotype (ON). Exponen

tial cell proliferation or growth rate was modelled by kx (a generation time of 1/kx). MemorySeq clonally derived pools were assumed to 

be in a constant state of exponential growth throughout the duration of the experiment, (from one cell to divide into 100,000 cells), 

with a consistent proliferation rate kx. This proliferation rate was also assumed to be constant with respect to whether an individual 

cell was in the ON or OFF state. The rate of fluctuation or transition from the ON to OFF state was denoted as kOFF while the inverse 

transition was denoted as kON. The fraction of cells displaying the rare ON state in the bulk population, f, was defined in Equation 2, or 

as the ratio of rates of transition. Previous work conducted by Shaffer et al. found f was typically 1% or less in RNA-FISH and internally 

confirmed by flow-cytometry.32

f =
kON

kON+kOFF

(Equation 2) 

In this fluctuation analysis, any given cell sampled from the bulk population has a probability f of existing in the rare ON state and 

probability 1-f of existing in the OFF state. The random variables x(t) and y(t) are then defined as the total number of cells in a given 

sample and time t in the ON and OFF state respectively. The stochastic time evolution of x(t) and y(t) is dictated by proliferation and the 

generation of new cells that inherit the ON or OFF state and fluctuations by existing cells between the ON and OFF state. The ratio x(t)/ 

(x(t) + y(t)) then represents the fraction of cells in the ON state at a given time t. Using the assumption that f << 1 and the first two 

statistical moments of x(t) and y(t), derived using moment dynamics of stochastic systems (see Singh and Hespanha), the CV2 of 

the ratio x(t)/(x(t) + y(t)) is given in Equation 3, where T = tkx represents the duration of the experiment normalized to generation count 

(T≈ 17 generations) and TON = kx/kOFF represents the average duration of the ON state normalized to generation count109,110

CV2 × f =
2TONe

(

T −
2T

TON

)

− 2 − TON

(2eT − 1)(TON − 2)
(Equation 3) 

Application of a priori knowledge of f by assuming its value to be 0.01, an inverse transformation of Equation 3 can be used to es

timate TON and the lifetime of certain heritable gene states (See Data S3: Heritability Index for Gene States Identified as Heritable).

Epigenome characterization relative to published data

Seven DNA methylation datasets reflecting 100 bp raw bisulfite-converted DNA from CHO-K1 variants cultured in different conditions 

produced from Feichtinger et al. were aligned to the CriGri PICR genome (run indices NCBI SRA: ERR866448 - NCBI SRA: 

ERR866454).8,101 Trimming and alignment pipeline adapted from Hillard et al.55 This first involves Trim Galore run in paired-end 

mode with the first 20 base pairs removed to reduce any bias often introduced during bisulfite sequencing.102 Reads were then 

aligned using the Bismark package with the –score_min L,0,-0.3, -N 1, -D 20, and -R 30 options.111 The heritable and non-heritable 

gene expression states were extracted for either the gene body (including introns and exons) or for the -1000 region relative to the 

transcription start site using the GenomicRanges package in R.112 The methylation percentage for CpG islands with at least a 

coverage of 4 were identified for these two regions.

ChIP-seq data, generated by Feichtinger et al., was aligned and the ChromHMM model built from an adapted method from Hillard 

et al.8,55 Three different batch timepoints (Tp5, Tp9, and Tp13) were included to develop the consensus ChromHMM model for the 

PICR genome and included an IgG negative control, H3K27ac, H3K27me3, H3K4me1, H3K4me3, H3K9me3, and H3K36me3.113

These were downloaded as BAM files before conversion to fastq using BEDTools bamtofastq.114 They were aligned to the PICR 

genome using Bowtie2 with the –sensitive-local option.115 Read alignment files were converted back to coordinate sorted BAM files 

after removing multi-aligned and mismatched reads using Samtools view with the -q 2 option.104 Using the ChromHMM software, 

BAM files were binarized using BinarizeBam to become compatible with LearnModel.116 The Eleven-state hidden Markov model 

was learned on the filtered reads with a maximum of 300 iterations to assign a biologically meaningful chromatin states to 

characteristic histone marks. Regions of the scaffolds with inconsistent state declarations across timepoints were considered 

‘‘non-consensus.’’ Similarly, GenomicRanges in R was used to identify differential chromatin state occupancy between heritable 

and non-heritable gene expression states112

Stress-condition fed-batch analysis

Transcriptomic analysis was conducted on cell-samples by first extracting RNA, submitting for sequencing, and processing the re

sults as described earlier. They were sequenced at a coverage of at least 65× and on average 75× with at least 35 million uniquely 

mapped reads per RNA sequencing library. Gene count tables were transferred to R and differential gene expression analysis (DGEA) 

was conducted using the DESeq2 (1.34.0) package.117 A log2 fold change (L2FC) threshold of 0.58 or a 1.5-fold change and a 

Bejamini-Hochberg adjusted p-value or false discovery rarte (FDR) of 0.05 defined genes with significant differential expression. 

The intersection of differentially expressed genes and heritable gene expression states was used in GO enrichment analysis to 

find significantly overrepresented biological processes (See Data S4: GO Enrichment Analysis).
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